• Title/Summary/Keyword: contrast-to-noise ratio

Search Result 291, Processing Time 0.031 seconds

Usefulness of contrast agent involving high gadolium content for myocardial viability assessment (심근생존능검사 시 가돌리늄 함유량이 높은 조영제의 유용성)

  • Choi, Kwan-Woo;Son, Soon-Yong;Kim, Tae-Hyung;Han, Man-Seok;Lee, Ju-Hee;Min, Jung-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1294-1300
    • /
    • 2013
  • The purpose of this study is to increase contrast to noise ratio(CNR) in myocardial viability test by using contrast agent which highly content gadolinium(1mmol/mL) maximizing diagnostic value. This research method that four hundred four patients were underwent the MRI scanning two hundred eighty four of them were injected commercial contrast media which have 0.5mmol/L and the rest of them were injected new contrast media(gadobutrol) which have 1mmol/mL of molarity to study the contrast difference depending on the molarity of the contrast agent signal intensities of normal ventricle and left ventricle were measured to compare and evaluate signal to noise ratio(SNR) and CNR of the images. As result, 1mmol/mL contrast agent showed higher SNR by 25.13% in myocardium and 30.74% in left ventricle. CNR was proved to be better in 1mmol/mL contrast agent by 31.29%. The results above were all statistically meaningful. Therefore, contrast agent contenting more gadolinium which was 1mmol/mL in this study, could more effectively shorten T1 relaxation time, increase the signal intensity and at the same time maximize CNR and diagnostic value. This study firstly report the usefulness of 1mmol/mL contrast agent in patients allegedly suffering cardiac diseases and it is considered to increase diagnostic value.

Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality (소아용 두부 컴퓨터단층촬영에서 딥러닝 영상 재구성 적용: 영상 품질에 대한 고찰)

  • Nim Lee;Hyun-Hae Cho;So Mi Lee;Sun Kyoung You
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.240-252
    • /
    • 2023
  • Purpose To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. Materials and Methods We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction (ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided into four subgroups according to the patients' ages. Clinical and dose-related data were reviewed. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharpness, artifact, acceptability, and unfamiliar texture change were evaluated and compared. Results The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, improvement of GM-WM differentiation, and improvement of sharpness was noted among strength levels of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did not show a significant difference among the adapted levels of DLIR. Conclusion Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image noise. Modification is needed while processing artifacts.

Median modified wiener filter for improving the image quality of gamma camera images

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2328-2333
    • /
    • 2020
  • The filter technique was applied to noise images, as noise is the significant factor that cause poor image quality due to lower photon counting. The purpose of this study is to confirm that image quality can be improved using the median modified Wiener filter (MMWF) technique; this is achieved via a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with four large spheres that are filled with the 99mTc radioisotope when evaluating the image quality. Conventional filters such as Wiener, Gaussian, and median filters were designed, and signal to noise ratio, coefficient of variation, and contrast to noise ratio were used as the evaluation parameters. The improvement in the image quality was in the following order, from the least to the highest improvement, in all cases: Wiener filter, Gaussian filter, median filter, and the MMWF technique. The results show that the image quality was improved from 20.6 to 65.5%, 7.4-40.3%, and 12.7-44.7% for the SNR, COV, and CNR values, respectively, when using the MMWF technique, compared with the use of conventional filters. In conclusion, our results demonstrated that the MMWF technique is useful for reducing the noise distribution in gamma camera images.

Signal Processing Techniques for Recovering Input Waveforms in Dispersive Lamb Wave Propagation (분산성 램파의 전파에서 입력 파형의 복원을 위한 신호처리)

  • Jeong, Hyunjo;Cho, Sungjong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.694-695
    • /
    • 2013
  • An experimental study has been made with the use of time reversal concepts to recover the input waveform in a long range propagation of dispersive Lamb waves. Three techniques have been tested: Regular TR, 1 bit TR and Inverse filter (IF). The IF approach was found to completely recover the original input signal. Moreover, the IF technique significantly increases the contrast, i.e., the ratio of the recovered signal and the sideband signal.

  • PDF

Value of Echo-Planar Imaging and MRI Dynamic Study in Differentiation Liver Diseases (간 질환 감별에 있이 MR영상의 역동적 검사와 EPI의 유용성)

  • Park, Byung-Rae
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 1997
  • The goal of this paper is that we know the usefulness of echo-planar imaging(EPI) for discriminate between hepatocellular carcinoma(HCC) and hemangioma. We get a time signal intensity curve for liver diseases from the dynamic contrast enhancement images and compared and analyze both the contrast ratio(CR) and the contrast to noise ratio(CNR) using echo planar imaging. The obtained results are follows : 1. Hepatocellular carcinoma was shown the best contrast after about 20 seconds when Is the earlist time in the main artery, and then reduced. The center where is disease was shown the characteristic that the best contrast is appeared after about 35-45 seconds and then slowly reduced. Liver parenchyma was shown the best contrast and reduced after 60 seconds. 2. The peripheral nodular of hemangioma was shown the better contrast soon. On the other hend, the contrast of center where is disease started to increase after 60 seconds and was equal to that of liver parenchyma. Increasing of the contrast continued after. 3. Turbo SE technic was used, the average of CR for hepatocellular carcinoma was $36.7{\pm}1.2$ and the average of CNR was $2.4{\pm}3.2$, while the average of CNR for hemangioma was $54.9{\pm}1.0$ and the average of CNR was $9.7{\pm}1.3$. 4. EPI technic was used, the average of CR for hepatocellular carcinoma was $47.8{\pm}1.2$ and the average of CNR was $3.4{\pm}2.1$, while the average of CNR for hemangioma was $75.7{\pm}2.2$ and the average of CNR was $9.5{\pm}1.1$. According to above we can find that hemangioma is more bright than hepatocellular carcinoma and the difference of brightness between hepatocellular carcinoma and hemangioma is useful sequence.

  • PDF

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

Performance analysis of improved hybrid median filter applied to X-ray computed tomography images obtained with high-resolution photon-counting CZT detector: A pilot study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3380-3389
    • /
    • 2022
  • We evaluated the performance of an improved hybrid median filter (IHMF) applied to X-ray computed tomography (CT) images obtained using a high-resolution photon-counting cadmium zinc telluride (CZT) detector. To study how the proposed approach improves the image quality, we measured the noise levels and the overall CT-image quality. We established a CZT imaging system with a detector length of 5.12 cm and thickness of 0.3 cm and acquired phantom images. To evaluate the efficacy of the proposed filter, we first modeled two conventional median filters. Subsequently, we were able to achieve a normalized noise power spectrum result of ~10-8 mm2, and furthermore, the proposed method improved the contrast-to-noise ratio by a factor of ~1.51 and the coefficient of variation by 1.55 relative to the counterpart values of the no-filter image. In addition, the IHMF exhibited the best performance among the three filters considered as regards the peak signal-to-noise ratio and no-reference-based image-quality evaluation parameters. Thus, our results demonstrate that the IHMF approach provides a superior image performance over conventional median filtering methods when applied to actual CZT X-ray CT images.

A Study on Characteristic of Image Quality according to CT Table Height in Computed Tomography (컴퓨터단층촬영 검사 시 테이블 높이에 따른 화질 특성에 관한 연구)

  • Ki-Won Kim;Jung-Whan Min;Sang-Sun Lee;Young-Bong Lee;Ki-Jong Lee;Han-Sol Park;Joo-Young Oh
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.295-301
    • /
    • 2023
  • In addition to protocol adjustments during CT examinations, the height of the CT table can also affect image quality. Therefore, this study aimed to investigate the change in image quality depending on the height of the table in brain CT, which accounts for a large proportion of CT examinations, by measuring signal to contrast to noise ratio (CNR) and noise power spectrum (NPS) using the head phantom and evaluating them. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. The CNR result showed the highest value at 965 mm, which is the height adjacent to the center of the head phantom. NPS showed the lowest NPS at 915 mm, the center of the head phantom in the low frequency region. From these results, it can be seen that the height of the table in CT examination is closely related to the image quality, and it can be seen the characteristics of image quality according to CT table through quantitative evaluation methods such as CNR and NPS.

Application of Total Variation Algorithm in X-ray Phantom Image with Various Added Filter Thickness : GATE Simulation Study (다양한 두께의 부가 여과판을 적용한 X-선 영상에서의 Total Variation 알고리즘 적용 : GATE 시뮬레이션 연구)

  • Park, Taeil;Jang, Sujong;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.773-778
    • /
    • 2019
  • Images using X-rays are essential to diagnosis, but noise is inevitable in the image. To compensate for this, a total variation (TV) algorithm was presented to reduce the patient's exposure dose while increasing the quality of the images. The purpose of this study is to verify the effect on the image quality in radiographic imaging according to the thickness of the additional filtration plate through simulation, and to evaluate the usefulness of the TV algorithm. By using the Geant4 Application for Tomographic Emissions (GATE) simulation image, the actual size, shape and material of the Polymethylmethacrylate (PMMA) phantom were identical, the contrast to noise ratio (CNR) and coefficient of variation (COV) were compared. The results showed that the CNR value was the highest and the COV the lowest when applying the TV algorithm. In addition, we can acquire superior CNR and COV results with 0 mm Al in all algorithm cases.