DOI QR코드

DOI QR Code

컴퓨터단층촬영 검사 시 테이블 높이에 따른 화질 특성에 관한 연구

A Study on Characteristic of Image Quality according to CT Table Height in Computed Tomography

  • 김기원 (한전의료재단 한일병원 영상의학과) ;
  • 민정환 (신구대학교 방사선학과) ;
  • 이상선 (한전의료재단 한일병원 영상의학과) ;
  • 이영봉 (한전의료재단 한일병원 영상의학과) ;
  • 이기종 (한전의료재단 한일병원 영상의학과) ;
  • 박한솔 (한전의료재단 한일병원 영상의학과) ;
  • 오주영 (연세암병원 방사선종양학과)
  • Ki-Won Kim (Department of Radiology, Hanil General Hospital) ;
  • Jung-Whan Min (Department of Radiological Science, Shingu University) ;
  • Sang-Sun Lee (Department of Radiology, Hanil General Hospital) ;
  • Young-Bong Lee (Department of Radiology, Hanil General Hospital) ;
  • Ki-Jong Lee (Department of Radiology, Hanil General Hospital) ;
  • Han-Sol Park (Department of Radiology, Hanil General Hospital) ;
  • Joo-Young Oh (Department of Radiation Oncology, Yonsei Cancer Center)
  • 투고 : 2023.07.26
  • 심사 : 2023.08.14
  • 발행 : 2023.08.31

초록

In addition to protocol adjustments during CT examinations, the height of the CT table can also affect image quality. Therefore, this study aimed to investigate the change in image quality depending on the height of the table in brain CT, which accounts for a large proportion of CT examinations, by measuring signal to contrast to noise ratio (CNR) and noise power spectrum (NPS) using the head phantom and evaluating them. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. The CNR result showed the highest value at 965 mm, which is the height adjacent to the center of the head phantom. NPS showed the lowest NPS at 915 mm, the center of the head phantom in the low frequency region. From these results, it can be seen that the height of the table in CT examination is closely related to the image quality, and it can be seen the characteristics of image quality according to CT table through quantitative evaluation methods such as CNR and NPS.

키워드

참고문헌

  1. Choi SY, Im IC. Noise and image quality analysis of brain CT examination. Journal of Radiological Science and Technology. 2019;42(4):279-84. https://doi.org/10.17946/JRST.2019.42.4.279
  2. Toth T, Ge Z, Daly MP. The influence of patient centering on CT dose and image noise. Medical Physics. 2007;34(7):3093-101. https://doi.org/10.1118/1.2748113
  3. Hanson KM. Detectability in computed tomographic images. Medical Physics. 1979;6(5):441-51. https://doi.org/10.1118/1.594534
  4. Kim HJ. Usefulness evaluation of application of metallic algorithm reducing for beam hardening artifact occur in typical brain CT image. Journal of the Korean Society of Radiology. 2017;11(1):389-95.
  5. Kim MC. The latest CT imaging technology studies theory QC. Chung-ku Publishing Co.; 2007.
  6. Kwon SM, Kim JS. The evaluation of eye dose and image quality according to the new tube current modulation and shielding techniques in brain CT. Journal of the Korean Society of Radiology. 2015;9(5):279-85. https://doi.org/10.7742/jksr.2015.9.5.279
  7. Hong DH. Research of protocols for optimization of exposure dose in abdominopelvic CT. Journal of the Korean Society of Radiology. 2017;40(2):245-51. https://doi.org/10.17946/JRST.2017.40.2.09
  8. Moon IB, Kwak JG, Sung HJ, Park SW, Kim MH, Dong KR. Evaluation of noise and SNR according to change of tube voltage by CT equipment-comparison of automatic exposure control method and manual exposure control method-. Journal of Radiation Industry. 2018;12(3):233-37.
  9. Choi SY. Noise reduction on low tube voltage CT images. Journal of Radiological Science and Technology. 2017;11(1):63-8.
  10. Lee JW, Jung HM. Evaluation of radiation dose and image quality according to CT table height. Journal of the Korean Society of Radiology. 2017;11(6):453-58.
  11. Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK. Automatic patient centering for MDCT: Effect on radiation dose. American Journal of Roentgenology. 2007;188(2):547-52. https://doi.org/10.2214/AJR.06.0370
  12. Habibzadeh MA, Ay MR, Kamali Asl AR, Ghadiri H, Zaidi H. Impact of miscentering on patient dose and image noise in X-ray CT imaging: Phantom and clinical studies. Physica Medica. 2012;28(3):191-9. https://doi.org/10.1016/j.ejmp.2011.06.002
  13. Kaasalainen T, Palmu K, Lampinen A. Effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT-phantom Study. Pediatric Radiology. 2013;43(6):673-84. https://doi.org/10.1007/s00247-012-2611-z
  14. Kaasalainen T, Palmu K, Reijonen V. Effect of patient centering on patient dose and image noise in chest CT. American Journal of Roentgenology. 2014;203(1):123-30. https://doi.org/10.2214/AJR.13.12028
  15. Kataria B, Sandborg M, Althen JN. Implications of patient centering on organ dose in computed tomography. Radiation Protection Dosimetry. 2016;169(1-4):130-5. https://doi.org/10.1093/rpd/ncv527
  16. Filev PD, Mittal PK, Tang X. Increased computed tomography dose due to miscentering with use of automated tube voltage selection: Phantom and patient study. Current Problems in Diagnostic Radiology. 2016;45(4):265-70. https://doi.org/10.1067/j.cpradiol.2015.11.003
  17. Saltybaeva N, Alkadhi H. Vertical off-centering affects organ dose in chest CT: Evidence from monte carlo simulations in anthropomorphic phantoms. Medical Physics. 2017;44(11):5697-704. https://doi.org/10.1002/mp.12519
  18. Kim KW, Oh JY, Min JW, Lee SS, Lee YB, Lim KH, et al. A study on radiation dose and image quality according to CT table height in brain CT. Journal of Radiological Science and Technology. 2023; 46(2):99-106. https://doi.org/10.17946/JRST.2023.46.2.99
  19. Kim KW, Kwon YR, Seo SW, Kwon KT, Oh JY, Son SY, et al. Comparison of exposure dose by using AEC mode of abdomen AP study in radiography. Journal of Radiological Science and Technology. 2015;38(3):205-11. https://doi.org/10.17946/JRST.2015.38.3.03
  20. Son SY, Choi KW, Min JW, Son JH, Kim KW, Jung JH, et al. Evaluation of quantitative on T-spine exhalation technique and T-spine breathing technique of natural breathing. Journal of the Korea Academia-Industrial Cooperation Society. 2013;14(9):4429-36. https://doi.org/10.5762/KAIS.2013.14.9.4429
  21. Kim KW, Min JW, Lyu KY, Kim JM, Jeong HW, Lee JA, et al. Comparison study on CNR and SNR of thoracic spine lateral radiography. Journal of Radiological Science and Technology. 2013;36(4):273-80.
  22. Son SY, Choi KW, Jeong HW, Kwon KT, Kim KW, Lee YA, et al. Comparison of noise power spectrum methodologies in measurements by using various electronic portal imaging devices in radiation therapy. Journal of Radiological Science and Technology. 2016;39(1):99-105. https://doi.org/10.17946/JRST.2016.39.1.12
  23. Baek J, Pelc NJ. The noise power spectrum in CT with direct fan beam reconstruction. Medical Physics. 2010;37(5):2074-81. https://doi.org/10.1118/1.3378673
  24. Penny W, Friston K, Ashburner J, Kiebel S, Nichols T. Statistical parametric mapping: The analysis of function brain images. Elsevier; 2006.
  25. Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schobinger M, et al. The medical imaging interaction toolkit. Medical Image Analysis. 2005;9(6): 594-604. https://doi.org/10.1016/j.media.2005.04.005
  26. Oppenheim AV, Schafer RW. Discrete-time signal processing. Pearson Education; 2009.
  27. IEC62220-1. Characteristics of digital X-ray imaging devices-Part1: Determination of the detective quantum efficiency. International Electro Technical Commission Report; 2003.
  28. Lee E, Kim DS. Noise power spectrum of radiography detectors. 2, Measurement based on the spectrum averaging. Journal of the Institute of Electronics Engineers of Korea. 2017;54(3):63-9.
  29. Ferreira BMP, Andersson N, Erik A, Engqvist J, Hall S, Dicko C. 3D structure and mechanics of silk sponge scaffolds is governed by larger pore sizes. Frontiers in Materials. 2020;7:144-69. https://doi.org/10.3389/fmats.2020.00144
  30. Siewerdsen JH, Cunningham IA, Jaffray DA. A framework for noise-power spectrum analysis of multidimensional images. Medical Physics. 2002;29(11):2655-71. https://doi.org/10.1118/1.1513158
  31. Funama Y, Taguchi K, Utsunomiya D, Oda S, Katahira K, Tokuyasu S, et al. Image quality assessment of an iterative reconstruction algorithm applied to abdominal CT imaging. Physica Medica. 2014;30(4):527-34. https://doi.org/10.1016/j.ejmp.2014.02.005
  32. Barca P, Lamastra R, Aringhieri G, Tucciariello RM, Traino A, Fantacci ME. Comprehensive assessment of image quality in synthetic and digital mammography: A quantitative comparison. Australasian Physical & Engineering Sciences in Medicine. 2019;42(4):1141-52. https://doi.org/10.1007/s13246-019-00816-8
  33. Barca P, Paolicchi F, Aringhieri G, Palmas F, Marfisi D, Fantacci ME, et al. A comprehensive assessment of physical image quality of five different scanners for head CT imaging as clinically used at a single hospital centre-A phantom study. PLoS One. 2021;16(1):1-17. https://doi.org/10.1371/journal.pone.0245374
  34. Jeong HW, Min JW, Kim JM, et al. Performance characteristic of a CsI(Tl) flat panel detector radiography system. Journal of Radiological Science and Technology. 2012;35(2):109-17.
  35. Kim KW, Jeong HW, Min JW, et al. Measurement of image quality according to the time of computed radiography system. Journal of Radiological Science and Technology. 2015;38(4):365-74.  https://doi.org/10.17946/JRST.2015.38.4.05