• Title/Summary/Keyword: contour image

Search Result 655, Processing Time 0.024 seconds

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

Tumor boundary extraction from brain MRI images using active contour models (Snakes) (스네이크를 이용한 뇌 자기 공명 영상에서 종양의 경계선 추출)

  • Ryeong-Ju Kim;Young-Chul Kim;Heung-Kook Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The study is to automatically or semi-automatically detect the accurate contour of tumors or lesions using active contour models (Snakes) in the MRI images of the brain. In the study we have improved the energy-minimization problem of snakes using dynamic programming and have utilized the values of the canny edge detector by the image force to make the snake less sensitive in noises. For the extracted boundary, the inside area, the perimeter and its center coordinates could be calculated. In addition, the multiple 2D slices with the contour of the lesion wore combined to visualized the shape of the lesion in 3D. We expect that the proposed method in this paper will be useful to make a treatment plan as well as to evaluate the treatments.

  • PDF

Enhanced Gradient Vector Flow in the Snake Model: Extension of Capture Range and Fast Progress into Concavity (Snake 모델에서의 개선된 Gradient Vector Flow: 캡쳐 영역의 확장과 요면으로의 빠른 진행)

  • Cho Ik-Hwan;Song In-Chan;Oh Jung-Su;Om Kyong-Sik;Kim Jong-Hyo;Jeong Dong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2006
  • The Gradient Vector Flow (GVF) snake or active contour model offers the best performance for image segmentation. However, there are problems in classical snake models such as the limited capture range and the slow progress into concavity. This paper presents a new method for enhancing the performance of the GVF snake model by extending the external force fields from the neighboring fields and using a modified smoothing method to regularize them. The results on a simulated U-shaped image showed that the proposed method has larger capture range and makes it possible for the contour to progress into concavity more quickly compared with the conventional GVF snake model.

Automated Print Quality Assessment Method for 3D Printing AI Data Construction

  • Yoo, Hyun-Ju;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.223-234
    • /
    • 2022
  • The evaluation of the print quality of 3D printing has traditionally relied on manual work using dimensional measurements. However, the dimensional measurement method has an error value that depends on the person who measures it. Therefore, we propose the design of a new print quality measurement method that can be automatically measured using the field-of-view (FOV) model and the intersection over union (IoU) technique. First, the height information of the modeling is acquired from a camera; the output is measured by a sensor; and the images of the top and isometric views are acquired from the FOV model. The height information calculates the height ratio by calculating the percentage of modeling and output, and compares the 2D contour of the object on the image using the FOV model. The contour of the object is obtained from the image for 2D contour comparison and the IoU is calculated by comparing the areas of the contour regions. The accuracy of the automated measurement technique for determining, which derives the print quality value was calculated by averaging the IoU value corrected by the measurement error and the height ratio value.

Contour Extraction Method using p-Snake with Prototype Energy (원형에너지가 추가된 p-Snake를 이용한 윤곽선 추출 기법)

  • Oh, Seung-Taek;Jun, Byung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.101-109
    • /
    • 2014
  • It is an essential element for the establishment of image processing related systems to find the exact contour from the image of an arbitrary object. In particular, if a vision system is established to inspect the products in the automated production process, it is very important to detect the contours for standardized shapes such lines and curves. In this paper, we propose a prototype adaptive dynamic contour model, p-Snake with improved contour extraction algorithms by adding the prototype energy. The proposed method is to find the initial contour by applying the existing Snake algorithm after Sobel operation is performed for prototype analysis. Next, the final contour of the object is detected by analyzing prototypes such as lines and circles, defining prototype energy and using it as an additional energy item in the existing Snake function on the basis of information on initial contour. We performed experiments on 340 images obtained by using an environment that duplicated the background of an industrial site. It was found that even if objects are not clearly distinguished from the background due to noise and lighting or the edges being insufficiently visible in the images, the contour can be extracted. In addition, in the case of similarity which is the measure representing how much it matches the prototype, the prototype similarity of contour extracted from the proposed p-ACM is superior to that of ACM by 9.85%.

3D Simulation of Thin Film using Contour Analysis of Interference Fringe Image and Interpolation Method (간섭무늬 영상 등고선 해석과 보간법을 이용한 박막의 삼차원 정보 형상화)

  • Kim, Jin-Hyoung;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • In this paper we proposes a new framework to obtain 3D shape information of thin film rapidly. The conventional equipments based on reflectometry are not suitable for obtaining 3D overall shape information of thin film rapidly since they require more than 30 minutes to measure the absolute thickness for 170 points. The proposed framework is based on an image analysis method that extracts contour lines from interference fringes images using Canny edge detector. The absolute thickness for contour lines are measured and then a height map from the contour lines is obtained by interpolation using Borgefors distance transformation. The extracted height map is visualized using the DirectX 3D terrain rendering method. The proposed framework can provide 3D overall shape information of thin film in about 5 minutes since relatively small number of real measurement for contour lines is required.

Reconstruction and Elimination of Optical Microscopic Background Using Surface Fitting Method

  • Kim Hak-Kyeong;Kim Dong-Kyu;Jeong Nam-Soo;Lee Myung-Suk;Kim Sang-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.10-17
    • /
    • 2001
  • One serious problem among the troubles to identify objects in an optical microscopic image is contour background due to non-uniform light source and various transparency of samples. To solve this problem, this paper proposed an elimination method of the contour background and compensation technique as follows. First, Otsu's optimal thresholding method extracts pixels representing background. Second, bilinear interpolation finds non-deterministic background pixels among the sampled pixels. Third, the 2D cubic fitting method composes surface function from pivoted background pixels. Fourth, reconstruction procedure makes a contour image from the surface function. Finally, elimination procedure subtracts the approximated background from the original image. To prove the effectiveness of the proposed algorithm, this algorithm is applied to the yeast Zygosaccharomyces rouxii and ammonia-oxidizing bacteria Acinetobacter sp. Labeling by this proposed method can remove some noise and is more exact than labeling by only Otsu's method. Futhermore, we show that it is more effective for the reduction of noise.

  • PDF

Contour and Feature Parameter Extraction for Moving Object Tracking in Traffic Scenes (도로영상에서 움직이는 물체 추적을 위한 윤곽선 및 특징 파라미터 추출)

  • Lee, Chul-Hun;Seol Sung-Wook;Joo Jae-Heum;Nam Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • This paper presents the method of extracting the contour and shape parameters for moving object tracking in traffic scenes. The contour is extracted by applying difference image method in reduction image and the features are extracted from original image to grow the accuracy of tracking. We used features such as circle distribution, center moment, and maximum and minimum ratio. Data association problem is solved by these features. Kalman filters are used for moving object tracking on real time. The simulation results indicate that the proposed algorithm appears to generate feature vectors good enough for multiple vehicle tracking.

  • PDF

Multi-granular Angle Description for Plant Leaf Classification and Retrieval Based on Quotient Space

  • Xu, Guoqing;Wu, Ran;Wang, Qi
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.663-676
    • /
    • 2020
  • Plant leaf classification is a significant application of image processing techniques in modern agriculture. In this paper, a multi-granular angle description method is proposed for plant leaf classification and retrieval. The proposed method can describe leaf information from coarse to fine using multi-granular angle features. In the proposed method, each leaf contour is partitioned first with equal arc length under different granularities. And then three kinds of angle features are derived under each granular partition of leaf contour: angle value, angle histogram, and angular ternary pattern. These multi-granular angle features can capture both local and globe information of the leaf contour, and make a comprehensive description. In leaf matching stage, the simple city block metric is used to compute the dissimilarity of each pair of leaf under different granularities. And the matching scores at different granularities are fused based on quotient space theory to obtain the final leaf similarity measurement. Plant leaf classification and retrieval experiments are conducted on two challenging leaf image databases: Swedish leaf database and Flavia leaf database. The experimental results and the comparison with state-of-the-art methods indicate that proposed method has promising classification and retrieval performance.

Image Segmentation Using Morphological Operation and Region Merging (형태학적 연산과 영역 융합을 이용한 영상 분할)

  • 강의성;이태형;고성제
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.156-169
    • /
    • 1997
  • This paper proposes an image segmentation technique using watershed algorithm followed by region merging method. A gradient image is obtained by applying multiscale gradient algorithm to the image simplified by morphological filters. Since the watershed algorithm produces the oversegmented image. it is necessary to merge small segmented regions as wel]' as region having similar characteristics. For region merging. we utilize the merging criteria based on both the mean value of the pixels of each region and the edge intensities between regions obtained by the contour following process. Experimental results show that the proposed method produces meaningful image segmentation results.

  • PDF