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Tumor boundary extraction from brain MRI images
using active contour models (Snakes)
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ABSTRACT

The study is to automatically or semi-automatically detect the accurate contour of tumors or lesions using active
contour models (Snakes) in the MRI images of the brain. In the study we have improved the energy-minimization
problem of snakes using dynamic programming and have utilized the values of the canny edge detector by the
image force to make the snake less sensitive in noises. For the extracted boundary, the inside area, the perimeter
and its center coordinates could be calculated. In addition, the multiple 2D slices with the contour of the lesion
were combined to visualized the shape of the lesion in 3D. We expect that the proposed method in this paper will
be useful to make a treatment plan as well as to evaluate the treatments.
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I. Introduction been developing up to the now, but those methods
have the limits and the higher level processing is
demanded.

In this paper we extract a region of tumor using
Active contour models (Snakes Algorithm) in an MRI
brain image. The snakes is the first proposed by Kass
et al. [3]. The objective of the snakes algorithms is to
find the closest contour around the natural boundary
of an object. A snakes deformation is controlled by an
energy function that consists of the internal and
external energy. Several algorithms proposed are
trying to solve various problems such as noise trap,
snakes initialization, energy function optimization,

MRI is a non-invasive method for producing
three-dimensional tomographic images of the human
body. MRI is most often used for the detection of
tumor, lesions and other abnormalities in soft tissues,
such as the brain. Several techniques for automatically
segmenting brain tissues in MRI scans of the head
have been developed [11[2].

A boundary extraction is an important process to
analysis area, volume, major axis, perimeter, center
coordinates and minor axis. It is also to preprocess
three dimensional reconstruction in medical image
processing. Many boundary extraction methods have
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concavity issues, etc. [41[5}61[7]. We have improved
energy -mini mization problem of snakes using a
dynamic program ming and noise trap using Canny
edge detector [6,8]. And we visualized a shape of
tumor from 2D slices of which number is eight and
number of snaxels (snake pixels) is twenty using a

software OpenGL.

I . MATERIAL AND IMAGE ACQUISITION

We acquired the three dimensional data of MRI. We
transferred data to a personal PACS workstation
which sets up mview ( Pi-View 2 , Mediface
Corporation, http://www.mediface.com). An image data
acquisition process is shown in figure 1.

Figl. Image data acquisition process.

In this study we consider some brain MRI images.
The imaging methods are Gradient dephase and T2

reading diagnosis
clinical diagnosis

and the image axis is axial. We used eight slices
which have a tumor of one set images. Besides we
can use imaging methods of T1, T2, FSE, SE and
axial, coronal, sagittal axis image.

We have implemented a program of Visual C++ 6.0
and OpenGL which run on a Pentium III 866 with
memory 384 MB.

M. ACTIVE CONTOUR MODELS

1. Active contour models (Snakes)

The snakes algorithm is to find the closet contour
around the natural boundary of an object. The contour
is initially placed near an edge under consideration,
then image forces draw a contour to the edge in the
image. As the algorithm iterates, the energy terms can
be adjusted by higher level processes to obtain a local
minimum that seems most useful to that process.
There are some differences of results according to the
minimization algorithm or parameters etc. The energy
function E is written in Eq. 1.[3]

E = [ E o (A9)ds

= 7B o)+ E i (o) + E (o )ds (1)

where v(s) is the position of a Snakes, Eins, Eimage and
Econ are the internal energy, image force and constraint
energy, respectively.

The internal energy FE,,; represents the forces

which constrain the curve to be smooth, E juue

represents the forces derived from the image which
congtrains the curve to take the shape of features
presented in the image, and the constraint energy

E ,, is the energy of a spring connected between a

point on the contour and a point in the plane. The
image energy is a linear combination of three terms all
of which are derived from the image.

E image— W IineE 1ine+ w edgeE edge+ w termE term (2)

where Eune is the image intensity it self, then
depending on the sign of Wine Eeqe is finding edge
function then Wedge is weight value, Ewm is smooth
function and Wterm is weight value.
We adopted the first and second term of the energy

function proposed by Williams et. al.[9].

E= [(9E ant BOE at HIE image)dls3)
where a(s), B(s), 7(s) is weight value
The first terms in Eq.3, namely, a continuity expressed

by Eq. 4 will have the minimum value when the
snaxels have distance near the average.
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Continuity term = d—|v,— v ;—, 4)

where d is average distance of snaxels, v; Is current

snaxel position and v;_;is previous snaxel position

The second term in Eq. 3, namely, a curverture

expressed by Eq. 5 is causes the snaxels to be

relatively spaced.
Curvature term = |v,-1—20 7+ v 41l 2 5)

The third term in Eq. 3 is image gradient which is the

image force and is written as Eq. 6.
Image force = —| VIx,y)|* ®6)

where [(x,y) is intensity value of X, y position

These values are normalized by dividing by the
largest value in the neighborhood to which the point

may move, giving a value in 0 to 1.

2. Image forces

The image force of third terms in Eq. 3 pushes the
curve to the significant lines which correspond to the
desired attributes. The curve is then attracted by a
local minima of the potential, which means the local
maxima of the gradient edges. When it passes by
edges, the curve is stopped if the edge is strong or
passes through if the edge is too weak. This avoids
the curve being trapped by spurious isolated edge point
we used Canny edge detector[8]. To do this we define
the attraction forces by simulating a potential defined
by convolving the binary edge image with a Gaussian
noise. And we apply values of various detectors in the
image force and then extract the boundary of an
interesting region.

Fig. 2(a) is an original image and Fig. 2(b) is the
image being added Gaussian noise to the original
image. Fig. 2(c) is an edge image of the Fig. 2(b)
using the Sobel edge detector. Fig. 2(d) is an edge
image of the Fig. 2(b) using the Canny edge detector.
Fig. 2(e) and Fig. 2(f) are the edge images of the Fig.
2(b) using the Laplasian and Prewitt edge detector,
respectively. Fig. 2(c) image looks a better result than

other images.

(a) Origianl Image (b) Added Gaussian

noise

(c) Edge image using (d) Edge image using

Canny edge detector in (b) Sobel edge detector in (b)

(f) Edge image using
prewitt edge detector
in (b}

(e) Edge image using
Laplasian edge detector
in (b)

Fig. 2. Edge images by various image forces for an
MRI brain image.

3. Dynamic programming

To reduce the computing costs, we adopted the
dynamic programming approach proposed by Amini et
al. [6].
snaxel is based only on local image features, the total

Knowing that the energy function at each

energy E wta Of a snakes with n snaxels is

E V1,09, =+ *,0,)= (7

E (v, 00,0+ Ef(vy, 3,00+ + + + +E,p(vy_g,Vne1,0,)
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where E;_1{v;—y,v;, v;1+i9 the energy at each snaxel

v; and E;_(v;_q, s, 0i41) = E ol 0) + E 5vi—1, 05, 034 )

internal

Eint

function and v; is current snaxel position,

where Eext, are the external, energy

Vi1, Vi+1
are previous and next snaxel position.
optimal value function S; in Eq. 8 is updated at each

iteration, based on the information on its two adjacent
snaxels.

S{vir, )= zljn_ri Si-i(wivi )+ allv,— Vz'—1|)2 +

Bl v — 20+ vimi| 2+ Eou(v) (®)

in which the initial condition is set as Sy(vy,vp) =10
and the search process starts from S; An energy

matrix is used to store the minimization value of

optimal functions in the neighborhood of wv; After

S,_1 is calculated, the snakes with the minimum

energy in iteration is obtained by back-tracking of the
energy matrix of snaxels. For finding the optimal
contour, the iterative process continues until Ein(D
does not change with time.

If there are n point and m directions at each point,
the complexity of calculating the elastic energy in one

iteration is O{#mm?). The active contour is guaranteed
to converge to a final solution in a finite number of
iterations since the energy measure is monotonically
decreasing with time. The algorithm halts when there
is no change in the total energy of the contour. Fig. 3
illustrates the correspondence between the decision set
and image pixels. The two curved arrows depict the
minimum energy configuration for the current iteration.

A
v
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-«

Fig. 3. The decision set of the
dynamic programing.

IV. RESULTS AND VISUALIZATION

Fig 4 shows the images to Fig 2(b) obtained using the
values of Sobel and Canny edge detector by the image
force of the snakes, respectively. The image of Fig.
4(a). looks better in boundary detection than the Fig.
4(b) for the Gaussian noise.

(b)

Fig. 4. Images using the snakes for the Gaussian

(a)

noise.
{a) Sobel edge detector, (b) Canny edge detector
Fig. 5 shows the results of the snakes in other brain
images with tumor. Fig. 5(a) and Fig. 5(c) are the
initialized images for the snakes and Fig. 5(b) and Fig
5(d) computed, respectively. We
initialized the snakes by hand in this paper.

are the images



s - A

HOBE WmEE 4482920034 /5

Fig. 5. Initializing and result of snakes

(a),(c) is initialization snaxels in other brain tumor

image. (b),(d) is result image of (a),(c)

The area, perimeter, x and y axis coordinate of the

tumor acquired from the position of snakes for the 8

slices are shown in Table 1. The area of the tumor

which is made up snaxels is computed by Eq. 9.

Area(Po...Pn—l) =

1—yixi+1) (9)

P; is a snaxel and (x;y;) is the coordinates of a

snaxel.

Table 1. Computed features of the brain tumor

(unit: pixel).

;:ture area |perimeter|x_center |y—center

| slice 1| 1488 145 114 91

slice 2 | 2553 185 116 92
_slice 3 | 3075 203 113 93
L sli 3501 220 111 98
_slice 5| 4023 237 114 102
| slice 6 | 4873 259 120 116
sl 5623 286 122 140
 slice 8 | 3603 218 125 132

We used the information of the snaxels to make the

shape of a tumor. We constructed the shape of the
tumor from the 8 slice images. Fig. 6(a) is a coronal
section image of Fig. 5 and Fig. 6(b) is a 3D

reconstruction for the tumor of the image.

(a) Coronal section of an MRI brain image
with tumor

EATumor Yiewer

(b) 3-D reconstruction of the tumor

Fig. 6. reconstruction of result image

V. CONCLUSIONS

Previous Snakes algorithms have problems such as

noise trap, snakes initialization, energy function

optimization, concavity issues, etc. In this study, we -
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have improved the energy-minimization problem of
snakes by means of a dynamic programming, so that
a global minimum can be guaranteed. We applied
various edge detectors of the image force. First, we
added a gaussian noise to an original image and then
applied Sobel and Canny detectors. The result for the
applied snakes shows that the Canny detector is less
sensitive to the noise and is better in edge detection
accuracy than the Sobel edge detector.

The area, perimeter and
calculated with snaxels and visualized a shape of
tumor in 3D from the eight slices of the 2D image

cenfer position are

with 20 snaxels using OpenGL in contour extraction.

We expect that the proposed method in this paper
will be useful to make a treatment plan as well as to
evaluate the treatments. In the future works, we will
improve problems of concavity and consider the edge
detection for the multiple lesions.
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