• Title/Summary/Keyword: continuum

Search Result 1,382, Processing Time 0.024 seconds

Numerical Simulation of NIL Process Based on Continuum Hypothesis (연속체 가정을 통한 NIL 공정의 전산모사)

  • Kim, Seung-Mo;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.532-537
    • /
    • 2007
  • Nano imprint lithography(NIL) is a cost-efficient, high-throughput processing technique to transfer nano-scale patterns onto thin polymer films. Polymers used as the resist include UV cured resins as well as thermoplastics such as polymethyl-methacrylate(PMMA). In this study, an analytic investigation was performed for the NIL process of transferring nano scale patterns onto polymeric films. Process optimization calls for a thorough understanding of resist flow during the process. We carried out 2D and 3D numerical analyses of resist flow during NIL process. The simulation incorporated continuum-hypothesis and the effects of surface tension were taken into account. For a more effective prediction of free surface, fixed grid scheme with the volume of fluid (VOF) method were used. The simulation results were verified with experimental results qualitatively. And the parametric study was performed for various process conditions.

  • PDF

Free Vibration and Dynamic Stability of the Axially Moving Continuum with Time-varying Length (축방향으로 이동하며 길이가 변하는 연속체의 자유 진동 및 동적 안정성)

  • 사재천;이민형;이승엽
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.272-279
    • /
    • 2002
  • The time-dependent frequency and energy of free vibration of the spagetti problem, that is the axially moving continuum with time-varying length, are investigated. Exact expressions for the natural frequency and time-varying vibration energy are derived by dealing with traveling waves. The vibration period increases with increasing length, but the free vibration energy decreases. When the string undergoes retraction, the vibration energy increases with time. The free response of the time-varying string is represented by superposing two traveling waves.

Global Acoustic Design Sensitivity Analysis using Direct BEM and Continuum DSA (직접 경계요소법과 연속계 설계민감도 해석법을 이용한 소음 설계 민감도 해석)

  • 왕세명;이제원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.81-87
    • /
    • 1998
  • In this paper, a global acoustic design sensitivity analysis (DSA) of field point pressure with respect to structural sizing design variables is developed. Firstly acoustic sensitivity is formulated and implemented numerically. And it is combined with continuum structural sensitivity to obtain the global acoustic, design sensitivity. For this procedure, GASA (global acoustic design sensitivity analyzer) has been developed. A half scale of automobile cavity model is considered in this paper. In order to confirm accuracy of the results of global acoustic DSA obtained by GASA, it is compared with the result of central finite difference method. In order to reduce computation time, Rayleigh approximated solution is evaluated and compared with the solution which used every nodal velocities. Also the acoustic optimization procedure is performed using design sensitivities. From these numerical studies, it can be shown that global acoustic DSA is a useful tool to improve acoustic problems.

  • PDF

Advanced numerical tool for composite woven fabric preforming

  • Cherouat, Abel;Borouchaki, Houman
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • In this paper, geometrical and mechanical approaches are proposed for the simulation of the draping of woven fabric onto complex parts. The geometrical discrete approach allows to define the ply shapes and fibres orientation in order to optimize the composite structural properties and the continuum meso-structural mechanical approach allows to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Some numerical simulations of forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of our approaches.

SYNCHROTRON EMISSION FROM THE GALACTIC HI LAYER

  • Kim, Yong-Gi;Oh, Jun-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.45-54
    • /
    • 2007
  • The relationship between the Galactic magnetic field strength and the gas density has been revisited. A synchrotron continuum emission data at 408 MHz and HI column density provide a good data for such study. But it is difficult to separate the synchrotron emission from the observed 408MHz radio emission, because the 408MHz radio emission has the component from the HI layer, as well as many components from other origins. We have tried to substract the component which is probably not related with HI layer, and present the results. We show that the method presented here is a more refined method than that of Brown & Chang (1983, hearafter BC83) to find the above mentioned relationship, and discuss the existence of such relationship in our Galaxy.

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong;Bauer, Erich;Sloan, Scott W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.

Response of a rocksalt crystal to electromagnetic wave modeled by a multiscale field theory

  • Lei, Yajie;Lee, James D.;Zeng, Xiaowei
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.467-476
    • /
    • 2008
  • In this work, a nano-size rocksalt crystal (magnesium oxide) is considered as a continuous collection of unit cells, while each unit cell consists of discrete atoms; and modeled by a multiscale concurrent atomic/continuum field theory. The response of the crystal to an electromagnetic (EM) wave is studied. Finite element analysis is performed by solving the governing equations of the multiscale theory. Due to the applied EM field, the inhomogeneous motions of discrete atoms in the polarizable crystal give rise to the change of microstructure and the polarization wave. The relation between the natural frequency of this system and the driving frequency of the applied EM field is found and discussed.

Measuring Nano-Width of Wave Fronts in Combustion: a Numerical Approach (연소시 발생하는 파면의 나노 사이즈 두께 측정: 수치적 접근)

  • Yoh, Jai-Ick
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.20-27
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

Proposal of the Stress Wave Concept and Its Applied Study as a Theory for the Dislocation Formation (전위생성에 대한 이론으로서의 응력파 개념에 대한 제안 및 적용 연구)

  • 서정현
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.449-456
    • /
    • 2001
  • The concept of stress wave was introduced through the quantized kinetic energy which is related to the potentional energy change of atom, molecular bond energy. Differentiated molecular bond energy $\varphi$() by the lst order displacement u becomes force F(F = d$\varphi$($u_i$)/du), if resversely stated, causing physically atomic displacement $u_i$. Such physical phenomena lead stress(force/area of applied force) can be expressed by wave equation of linearly quantized physical property. Through the stress wave concept, formation of dislocation, which could not explained easily from a theory of continuum mechanics, can be explained. Moreover, this linearly quantized stress wave equation with a stress concept for grains in a crystalline solid was applied to three typical metallic microstructures and a simple shape. The result appears to be a product from well treated equations of a quantized stress wave. From this result, it can be expected to answer the reason why the defect free and very fine diameters of long crystalline shapes exhibit ideal tensile strength of materials.

  • PDF

A New Approach for Multi-Scale for Material Deformation (재료변형의 멀티스케일 해석에 관한 새로운 접근법)

  • Park J.;Kim Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.62-65
    • /
    • 2004
  • Recently, an approach for nanoscale deformation has been developed that couples the atomistic and continuum approaches using Finite Element Method (FEM) and Molecular Dynamics (MD). However, this approach still has problems to connect two approaches because of the difference of basic assumptions, continuum and atomistic. To solve this problem, an alternative way is developed that connects the quasimolecular dynamics (QMD) and molecular dynamics (MD). In this paper, we suggest the way to make and validate the MD-QMD coupled model.

  • PDF