• Title/Summary/Keyword: continuum

Search Result 1,382, Processing Time 0.023 seconds

Phenomenological Case Study of the Process of Becoming Alcohol Dependence Among Women. (여성의 알코올 의존에 이르게 되는 과정에 관한 현상학적 사례연구)

  • Song, Jin-Ah;Kang, Kyonghwa
    • Korean Journal of Social Welfare Studies
    • /
    • v.44 no.3
    • /
    • pp.113-145
    • /
    • 2013
  • This research is a phenomenological case study to find about the process of becoming alcohol dependence among women, with a lifetime contextual point of view. The first phenomenon which participants experience within their lifetime was 'incomplete relationship'. This was a trigger to become alcohol dependence. The researchers whom participated in this research focused on the first alcohol intake. The first drink has been given a unique meaning as 'characteristic symbol system'. While the participants were choosing alcohol, dailiness, a continuum of daily life emerged. With dailiness aspect, alcohol dependence goes through a process of 'invasion or penetration'. Through these processes alcohol dependent experience among women became 'meaninglessness and mirage'. According to these results undertone to approach women alcohol dependence was able to be deducted.

Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect

  • Chaht, Fouzia Larbi;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Beg, O. Anwar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.425-442
    • /
    • 2015
  • This paper addresses theoretically the bending and buckling behaviors of size-dependent nanobeams made of functionally graded materials (FGMs) including the thickness stretching effect. The size-dependent FGM nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a sinusoidal variation of all displacements through the thickness without using shear correction factor. The material properties of FGM nanobeams are assumed to vary through the thickness according to a power law. The governing equations and the related boundary conditions are derived using the principal of minimum total potential energy. A Navier-type solution is developed for simply-supported boundary conditions, and exact expressions are proposed for the deflections and the buckling load. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and stability responses of the FGM nanobeam are discussed in detail. The study is relevant to nanotechnology deployment in for example aircraft structures.

Particle-based Numerical Simulation of Continuous Ice Breaking Process around Wedge-type Model Ship (쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션)

  • Ren, Di;Sin, Woo-Jin;Kim, Dong-Hyun;Park, Jong-Chun;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.23-34
    • /
    • 2020
  • This paper covers the development of prediction techniques for ice load on ice-breakers operating in continuous ice-breaking under level ice conditions using particle-based continuum mechanics. Ice is assumed to be a linear elastic material until the fracture occurs. The maximum normal stress theory is used for the criterion of fracture. The location of the crack can be expressed using a local scalar function consisting of the gradient of the first principal stress and the corresponding eigen-vector. This expression is used to determine the relative position of particle pair to the new crack. The Hertz contact model is introduced to consider the collisions between ice fragments and the collisions between hull and ice fragments. In order to verify the developed technique, the simulation results for the three-point bending problems of ice-specimen and the continuous ice-breaking problem around a wedge-type model ship with bow angle of 20° are compared with the experimental results carrying out at Korea Research Institute of Ships and Ocean Engineering (KRISO).

Fabrication of Transient Absorption Spectroscopic System and Measurement of Transient Absorption Changes of DDI (순간흡수 분광학 측정장치 구성 및 DDI의 순간흡수율 변화 측정)

  • Seo, Jung-Chul;Lee, Min-Yung;Kim, Dong-Ho;Jeong, Hong-Sik;Park, Seung-Han;Kim, Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.209-213
    • /
    • 1991
  • Recently, the developments in generating and amplifying ultrashort optical pulses $(ps=10^{-12}s or fs=10^{-15}s)$ have imposed on great advances in the time-resolved laser spectroscopy. Especially, the transient absorption spectroscopy has a wide application range and the main idea of this technique is pump & probe method. After the pump pulse makes the material an excited or a transient states, the probe pulse is sent through the material to measure the absorbance change due to the transient states. Here, if the absorbance change was measured by the time delay between pump & probe pulses, the dynamic information of the excited or the transient states (the transient abnsorption changes by time & wavelength) can be obtained. At our laboratory, the ultrashort optic1 pulse (

  • PDF

Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects

  • Shen, J.P.;Li, C.;Fan, X.L.;Jung, C.M.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2017
  • A microstructure-dependent dynamic model for silicon nanobeams with axial motion is developed by considering the effects of nonlocal elasticity and surface energy. The nanobeam is considered to subject to both transverse and longitudinal loads arising from nanostructural surface effect and all positive directions of physical quantities are defined clearly prior to modeling so as to clarify the confusions of sign in governing equations of previous work. The nonlocal and surface effects are taken into consideration in the dynamic behaviors of silicon nanobeams with axial motion including circular natural frequency, vibration mode, transverse displacement and critical speed. Various supporting conditions are presented to investigate the circular frequencies by a numerical method and the effects of many variables such as nonlocal nanoscale, axial velocity and external loads on non-dimensional circular frequencies are addressed. It is found that both nonlocal and surface effects play remarkable roles on the dynamics of nanobeams with axial motion and cause the frequencies and critical speed to decrease compared with the classical continuum results. The comparisons of the non-dimensional calculation values by present and previous studies validate the correctness of the present work. Additionally, numerical examples for silicon nanobeams with axial motion are addressed to show the nonlocal and surface effects on circular frequencies intuitively. Results obtained in this paper are helpful for the design and optimization of nanobeam-like microstructures based sensors and oscillators at nanoscale with desired dynamic mechanical properties.

Synergistic Effects for Remediation of Salt-affected Soil using Dendranthema zawadskii var. latilobum and Soil Amendments under High-concentration Calcium Chloride (고농도 염화칼슘 농도처리에 따른 토양개량제와 구절초의 염분저감 상승효과)

  • Yoon, Yong-Han;Yang, Ji;Park, Je-Min;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.803-809
    • /
    • 2021
  • This study aimed to investigate the effects of soil amendment (heat-expanded clay and active carbon) and planting of Dendranthema zawadskii var. latilobum on the remediation of salt-affected soil and the plant growth under high calcium chloride (CaCl2) concentration. The experimental group comprised treatments including Non treatment (Cont.), heat-expanded clay (H), active carbon (AC), planting (P), heat-expanded clay+planting (H+P), active carbon+planting (AC+P). A 200 mL solution of CaCl2 at a concentration of 10 g·L-1 was applied as irrigation once every 2 weeks. Compared to the Cont., the incorporation of the 'heat-expanded clay' amendment decreased electrical conductivity of the soil leachate and cation exchange capacity, whereas the growth of Dendranthema zawadskii var. latilobum was relatively increased. These results suggest that the combination of 'heat-expanded clay' amendment and planting will mitigate negative effect of de-icing salts and improve plant growth in salt-contaminated roadside soils.

Effects of Fracture Tensor Component and First Invariant on Block Hydraulic Characteristics of the 2-D Discrete Fracture Network Systems (절리텐서의 성분 및 일차불변량이 2-D DFN 시스템의 블록수리전도 특성에 미치는 영향)

  • Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • In this study, the effects of fracture tensor component and first invariant on block hydraulic behaviors are evaluated in the 2-D DFN(discrete fracture network) systems. A series of regression analysis is performed between connected fracture tensor components and block hydraulic conductivities estimated at every $30^{\circ}$ hydraulic gradient directions for a total of 36 DFN systems having various joint density and size distribution. The directional block hydraulic conductivity seems to have strong relation with the fracture tensor component estimated in direction perpendicular to it. It is found that an equivalent continuum approach could be acceptable for the 2-D DFN systems under condition that the first invariant of fracture tensor is more than 2.0~2.5. The first invariant of fracture tensor seems highly correlated with average block hydraulic conductivity and can be used to evaluate hydraulic characteristics of the 2-D DFN systems. Also, a possibility of upscaling using the first invariant of fracture tensor for the DFN system is addressed through this study.

Shape Design Optimization of Electrode for Maximal Dielectrophoresis Forces (최대 유전영동력을 위한 전극의 형상 최적설계)

  • Jeong, Hong-Yeon;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • A continuum-based design sensitivity analysis(DSA) method is developed for electrostatic problems. To consider high order objective functions, we use 9-node finite element basis functions for analysis and DSA methods. As the design variables are parameterized with B-spline functions, smooth boundary variations are naturally obtained. To solve mesh entanglement problems during the optimization process, a mesh regularization scheme is employed. By minimizing the Dirichlet energy functional, mesh uniformity can be automatically achieved. In numerical examples for maximizing dielectrophoresis forces, the numerical results are compared with well-known electrode geometries and the obtained characteristics are discussed.

SEOUL NATIONAL UNIVERSITY AGN MONITORING PROJECT. I. STRATEGY AND SAMPLE

  • Woo, Jong-Hak;Son, Donghoon;Gallo, Elena;Hodges-Kluck, Edmund;Jeon, Yiseul;Shin, Jaejin;Bae, Hyun-Jin;Cho, Hojin;Cho, Wanjin;Kang, Daeun;Kang, Wonseok;Karouzos, Marios;Kim, Minjin;Kim, Taewoo;Le, Huynh Anh N.;Park, Daeseong;Park, Songyoun;Rakshit, Suvendu;Sung, Hyun-il
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.109-119
    • /
    • 2019
  • While the reverberation mapping technique is the best available method for measuring black hole mass in active galactic nuclei (AGNs) beyond the local volume, this method has been mainly applied to relatively low-to-moderate luminosity AGNs at low redshift. We present the strategy of the Seoul National University AGN Monitoring Project, which aims at measuring the time delay of the $H{\beta}$ line emission with respect to AGN continuum, using a sample of relatively high luminosity AGNs out to redshift z ~ 0.5. We present simulated cross correlation results based on a number of mock light curves, in order to optimally determine monitoring duration and cadence. We describe our campaign strategy based on the simulation results and the availability of observing facilities. We present the sample selection, and the properties of the selected 100 AGNs, including the optical luminosity, expected time lag, black hole mass, and Eddington ratio.

Interrelationship between Records and Information (기록과 정보의 상관관계)

  • Song, Byoung-Ho
    • The Korean Journal of Archival Studies
    • /
    • no.20
    • /
    • pp.3-32
    • /
    • 2009
  • When the record management faces to the information environment, the practices based on self-judgment needs more open and considerate policies. New viewpoint that treat records as information and treat information as records will produce new mutual-conscious behavior that create records based on the value of information usage and maintain information data based on the reliability as an record. As the internal aspect how to create records well, how to transfer them well, and how to archives them well used to be the focus of record management, existing legislation, guidelines, and training seem to be mainly related to this front steps. We should also address issues according to the succeeding information services, including opening to the relevant, sharing, duplicating, information security, privacy protection, and constructing collections with continual supplement. This paper observe the confusion of the viewpoints in the recent reports, explain the need of fusion viewpoint, and suggest interconnecting feedback cycle between record management system and general information system.