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Abstract

A continuum-based design sensitivity analysis(DSA) method is developed for electrostatic problems. To consider high order 

objective functions, we use 9-node finite element basis functions for analysis and DSA methods. As the design variables are 

parameterized with B-spline functions, smooth boundary variations are naturally obtained. To solve mesh entanglement problems 

during the optimization process, a mesh regularization scheme is employed. By minimizing the Dirichlet energy functional, mesh 

uniformity can be automatically achieved. In numerical examples for maximizing dielectrophoresis forces, the numerical results are 

compared with well-known electrode geometries and the obtained characteristics are discussed.
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1. Introduction

The electric field generated by the electrode can be 

applied in various engineering fields. One of the 

examples is the dielectrophoresis(DEP) phenomenon, 

which makes it easy to handle small particles that 

have traditionally been difficult to handle with 

mechanical forces, by forming a suitable electric field 

according to the purpose(Pohl et al., 1978). This 

means that the particles could move under a 

non-uniform electric field in a specified direction. 

Studies dealing with small particles using the DEP 

have widely been carried out as follows: particle 

separation, DNA analysis, and so on. To further 

extend these studies, it is important to obtain an 

appropriate electric field for the purpose. In general, 

the influence of electric field is also influenced by the 

material properties of the particles or medium to be 

treated, the shape of electrode is also significantly 

influenced as well(Park et al., 2005). Therefore, this 

paper aims to study the electrode with the optimal 

shape to produce the appropriate electric field according 

to the purpose. 

To achieve this goal, Yoon(Yoon et al., 2010) used 

a topology optimization technique to obtain the 

non-uniform electric field of high intensity. However, 

topology optimization has disadvantages in that the 

boundary of the obtained optimal shape is discrete, 

the distinction of the structure boundary is not clear, 

and the optimal shape with low productivity is obtained. 

There is also a paper on the optimal shape of 

electrodes using a genetic algorithm that requires a 
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high performance computation device and long compu-

tation time, which shows a limitation of the method. 

Therefore, we employ a shape design optimization 

method.

In this study, we study a gradient-based shape 

design optimization method using finite element method. 

The easiest choice of design variable in the shape 

design optimization is the nodal coordinates of the 

finite element model. In this case, however, it is 

difficult to obtain an unrealistic model with irregular 

boundary due to too many design variables and to 

maintain an adequate finite element mesh in the 

optimization process. Therefore, to resolve this issue, 

the design variables are parameterized by b-spline 

functions. Also, in the shape design optimization, 

boundary variations are performed at each optimi-

zation iteration. The nodal coordinates in the domain 

must be updated to prevent mesh distortion problem. 

The re-meshing has the disadvantage that the 

optimization convergence may be deteriorated due to 

the sudden change of the mesh structure and the loss 

of original nodal connectivity. To overcome the afore-

mentioned issues, we employ a mesh regularization 

scheme(Choi et al., 2015). The method minimizes a 

Dirichlet energy functional to obtain an effective 

mapping between the parametric and the physical 

domains. The variance of the Jacobian is minimized 

to obtain the mesh uniformity. 

This paper proposes a continuum-based design 

sensitivity analysis method developed for elect-

rostatic problem. By applying the techniques that are 

used to obtain smooth boundaries and lower numerical 

instability, we verify our proposed method through 

optimal electrode design and optimization history in 

numerical examples. Finally, we draw some conclusions 

derived from this research and present possible topics 

that can be studied in the future.

2. Shape deisgn optimization

We describe the governing equations and finite 

element formulations for the electrostatic problems to 

obtain the optimal shape of electrode for the desired 

performance. A continuum-based shape design sensi-

tivity expressions are derived for the general perfor-

mance functional using both the direct differentiation 

method and the adjoint method.

2.1 Variational formulation of electrostatic 

problem

Consider the electrostatic problem shown in Fig. 1.

Fig. 1 Electrostatic problem

The general governing equation of electrostatic 

problem is 

∇  (1)

In addition to the governing equation (1), the 

dirichlet boundary conditions are imposed as

  
 (2)

The trial solution space  is defined as

∈      (3)

and the space  for the virtual electric potential as

∈       (4)

Using the virtual electric potential  that satisfies 

the homogeneous boundary conditions, the weak form 

of Eq. (1) is written as




∇∙∇ (5)

    





∙   ∈
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A bilinear electric energy form is defined as

≡


∇∙∇ (6)

and a linear load form as

≡





∙ (7)

Since the objective function can include second 

derivative of the response, we use quadratic shape 

functions for approximating the geometry and the 

response. 

2.2. Material derivative

Consider the variation of domain from an original 

domain  to a perturbed domain  as shown in Fig. 2.

Fig. 2 Variation of domain

Suppose that only one parameter  defines a trans-

formation . The mapping   → ,
∈ is given by

≡
 (8)

and

≡ (9)

A design velocity field   that is equivalent to a 

mapping rate can be defined as









(10)

The point-wise material derivative of response  

at ∈ is expressed as

≡


 

′∇∙ (11)

where  ′ and ∇ are the partial derivative and 

gradient of , respectively.

Consider the general performance functional in 

domain and boundary integral forms

 


 (12)

and

 


 (13)

The first order variations with respect to the shape 

design parameter  are derived as


′ 

 


 (14)











′∇∙∇∙




′∇∙

and


′ 

 


 (15)






∥∥




′∇∙∙

where  ∇∙ is used. For a detailed derivation of 

shape sensitivity expressions, the interested readers 

may refer to the reference(Haug et al., 1986)

2.3 Shape sensitivity analysis-direct differe-

ntiation method

Taking the first order variation of the bilinear 

electric energy form and linear load form which 

respect to shape design parameter , we have followings 

 
′
′ ′ ′ (16)

and

  
′
 

′
′ (17)
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where ′ and  ′ denote the explicit variation 

terms with the dependence of their arguments on the 

shape design parameter suppressed. For brevity of the 

problem, the external loads are assumed independent 

of shape variations. Using the linearity of energy and 

load forms and the fact that  ′ ∇∙ , Eqs. 

(16) and (17) are rewritten as

 
′ ′  ∀∈ (18)

where

≡


∇∙∇ (19)


′ ≡′∇∙ (20)

 ′∇∙∇∙ (21)

The load terms are assumed to be independent of 

shape variations. By solving equation, the response 

sensitivity  can be obtained. However, in general, 

not all the response sensitivities are required to 

obtain the sensitivity of the performance measure. 

Thus, the direct differentiation method is somewhat 

inefficient in terms of computation costs. To improve 

such problem, the following adjoint variable method 

can be used to efficiently compute the design 

sensitivity of a specified performance function.

2.4 Shape sensitivity analysis-adjoint variable 

method

Consider a general objective function that may be 

written in integral form as

 


∇∇∇ (22)

where ∈ and function  is continuously 

differentiable with respect to its arguments. By using 

the material derivative formulas from Eq. (14), the 

variation of the functional in Eq. (22) can be 

obtained as

′ 



′∇∙∇ ′∇∇∙∙∇∇ ′ (23)

∇∙

Using the relation in Eq. (11), the partial deriva-

tives in Eq. (23) can be rewritten in terms of  as:

′ 



∇∙∇

∇∇∙∙∇∇ (24)

 ∇∙
 ∇∙∇∇∙



∇∇∙∙∇∇∇∙
∇∙

Note that ,∇, and ∇∇ depend on velocity 

field  . 

An adjoint equation is introduced by replacing 

∈ in Eq. (24) by the virtual electric voltage ∈ 

and by equating the sum of terms involving  with 

the energy bilinear form, yielding the adjoint 

equation for the adjoint variable  as

 (25)



∇∙∇∇∇∙∙∇∇ 

∀∈

To take advantage of the adjoint equation, evaluate 

Eq. (25) at ∈∈ to obtain the following,

 (26)



∇∙∇∇∇∙∙∇∇ 

Similarly, the design sensitivity equation (18) may 

be evaluated at ∈, since both belong to , to 

obtain 

 
′ ′  (27)

Recalling that energy bilinear form ∙∙is 

symmetric in its arguments, we can conclude that the 

left sides of Eqs. (26) and (27) are equal. Thus, the 

right sides of both equations yield the following useful 

relation



∇∙∇∇∇∙∙∇∇  (28)

 
′ ′ 
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By substituting Eq. (28) into Eq. (24), the exp-

ression of ′ in terms of  and   is obtained as

′  ′ ′ 


∇∙
 (29)

∇∙∇∇∙
∇∇∙∙∇∇∇∙



∇∙

Note that the evaluation of the design sensitivity 

formula in Eq. (29) requires solving the variational 

Eq. (5) for . Similarly, the variational adjoint Eq. 

(25) must be solved for adjoint variable . Using 

finite element analysis, solving for  is efficient if 

the boundary-value problem for  has already been 

solved, since all that is required is adapting the 

solution to the same set of finite element equations 

with a different right side(adjoint load).

3. Shape design optimization techniques in finite 

element analysis

We introduce techniques used to obtain smooth 

boundaries and lower numerical instability in finite 

element shape optimization. First, we describe the 

shape-design parameterization where design variables 

are parameterized using B-spline functions. Second, 

we describe how the mesh regularization scheme in 

this method is applied in finite element framework.

3.1 Design variable parameterization 

In finite element analysis, the nodal coordinates on 

boundary are usually taken as shape variables. 

However, this independent nodal movement approach 

makes very large set of design variables since all 

nodes on the design boundary must be adopted as 

design variables. This means that the design variable 

number on the fine mesh increases exponentially. 

Also the conventional method has a tendency to 

generate unrealistic wiggly designs due to large design 

space. This unrealistic design not only lowers the 

manufacturability of the resulting optimal shape, but 

also does not meet geometrical requirements on the 

regularity of the boundaries.

To resolve such problems in taking nodal coordinates 

on the boundary as shape variables, we use the para-

meterization technique that is not to take all nodal 

coordinates on boundaries as design variables, but to 

take only some representative nodal coordinates as 

design variables. Although various functions can be 

used as parametric functions, this paper adopts the 

B-spline function as a parametric function(Braibant 

and Fluery et al., 1984). The B-spline function is 

easy to express complex geometry with a small set of 

design variables and is flexible enough to satisfy the 

regularity constraint at the boundary. Additional 

control points can be introduced without increasing 

the degree of the curve. Therefore, the parameteri-

zation of design variables using B-spline functions 

avoids unrealistic design. Also, the H-refinement 

property of the b-spline curves makes it possible to 

easily calculate the interpolation values ​​between design 

variables. 

3.2 Mesh regularization scheme

In shape design optimization, since the structural 

boundary varies at every iteration, maintaining high 

mesh quality is an important issue. Thus, it is still 

an inherent challenge to update inner node coordi-

nates after boundary variations. Generally re-meshing 

scheme is used to obtain high mesh quality if the 

boundary variation is significantly large and compli-

cated. However, re-meshing scheme should not be 

frequently used, since the large variation of mesh 

structure may lead to sudden variations of the objective 

function or violation of the constraints which prevents 

smooth convergence to an optimal shape. Furthermore, 

when the re-meshing scheme is used, the connec-

tivity between elements and nodes changes. Therefore, 

when performing shape optimization, various methods 

of maintaining high mesh quality without re-meshing 

scheme have been studied. In this paper, we use a 

mesh regularization scheme that minimizes the 

following Dirichlet energy functional with convexity 

properties. 
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(a) Problem definition (b)FEM model

Fig. 3 Parallel electrode geometry

  



∥∇∥ ∥∇∥ (30)

 




 

 
 

 

Since the Eq. (37) is convex, the minimization of 

equation is equivalent to satisfying Laplace’s equation. 

If it satisfies Laplace’s equations, mapping   

→
 can be achieved and also bijective 

mapping can be obtained by the RKC theorem.

4. Numerical examples

In this chapter, we demonstrate the effectiveness 

of the methodologies presented in this paper using 

various numerical examples. Section 4.1 uses the 

sensitivity formulation derived from chapter 2. The 

obtained expressions are verified by comparing with 

the finite difference ones. In section 4.2, shape design 

optimization is performed on 2D electrodes using the 

shape sensitivities derived from chapter 2 and the 

techniques described in chapter 3.

4.1 Shape design sensitivity verification

The derived shape sensitivity is compared with the 

finite difference one to verify the derived analytical 

expressions. Since the shape sensitivity provides the 

search direction, it has a significant role in gradient 

based optimization. The basic shape of electrode is 

thin parallel plates. Therefore, in this paper, we try 

to model and interpret the most basic 2D parallel 

plate structure as the following figure. 


 and 

 are each considered anode and cathode. 

In anode boundary 
 the prescribed electric potential 

value is 10, and in cathode boundary 
 the prescribed 

electric potential value is 0. The parallel electrode 

geometry model is discretized with 2025 elements 

and 8281 nodes. To obtain the necessary design 

velocity field for the shape DSA, the shape variation 

in Fig. 3(a) is considered. The black arrows represent 

velocity field which is comprised of all vertical 

directions to the surface on Dirichlet boundary. As 

using the design variable parameterization method, 

we don’t need to take all nodes on Dirichlet boundary 

as design variables to express the design velocity 

field. We take only 32 nodes to represent design 

velocity field. The design velocity field is easily 

obtained from the perturbed node positions. 

  (31)

where  s the difference of node positions between 

the original and the perturbed models. So, the design 

velocity field is also interpolated by the same general 

9-node quadratic shape function which is used 

geometry field expression. The amount of design 

perturbation is 0.01% and a linear velocity field is 

assumed. In Table 1, the shape sensitivity of electric 

voltage from equation is compared with the finite 

difference results. The objective function is the electric 

voltage on some selected points shown in Fig. 3(b). 

As shown in Table 1, a good agreement of shape 

sensitivity is observed.

Node FDM AVM Agreement(%)

A -2.798E-1 -2.798E-1 -2.798E-1

B -1.720E-2 -1.720E-2 -1.720E-2

C 4.593E-3 4.593E-3 4.593E-3

D 2.801E-2 2.801E-2 2.801E-2

E 5.998E-3 5.998E-3 5.998E-3

Table 1 Comparison of design sensitivity with finite 

difference method

Now that we have obtained very accurate and 

efficient sensitivity as shown Table 1, we are ready to 

perform shape design optimization for the electrostatic 

problem. 
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Fig. 4 Four electrodes 

4.2 Shape design optimization for 2D electrodes 

Some numerical examples for the shape optimi-

zation are demonstrated to show the applicability 

and effectiveness of the proposed method. In all 

examples, the permittivity of medium is assumed a 

unit value. If the only one kind of medium exists,  

can be considered a constant value which can be 

eliminated in governing equation. And also, all kind 

of load terms in equation are assumed equal to zero. 

We only consider electrode shape optimization where 

electric charge density  and electric flux ∙ on 

surface don’t exist. Consider an electrostatic problem 

where we have only an anode of 10V and a cathode of 

0V. 

For first example, the objective is to find an 

optimal design for a maximum DEP force. The DEP 

force is one of the useful techniques for dealing with 

the movement of fine particles. Thus, we make the 

following objective function since the DEP force has a 

gradient of the square of electric field as its variable.

  (32)






∇∇∙∇∙∇∇∙∇

where  is an element located in the center of the 

whole domain. Thus, the shape optimization problem 

for maximum DEP force at center point is stated as

 

when 


≥


 (33)

The shape sensitivity of the volume can be written 

as



 


 


∇∙ (34)

Consider the following 4-electrode square model.

The black arrows represent design velocity field 

and only 22 nodes on Dirichlet boundary are taken as 

design variables for design parameterization method. 

The initial model is discretized with 3,721 elements 

and 900 nodes. The B-spline function order for design 

variable parameterization is 8 and the constraint 

volume is 50%. Fig. 5 shows optimal shape and other 

results with initial model.

Fig. 5 Shape optimization result for 4 electrodes 

As shown in Fig. 5, it can be seen that the force of 

the DEP force tends to increase due to the concave 

shape of the central part. This is similar to the 

smooth quadratic curve obtained by assuming a 

polynomial function for the same example by Y. 

Huang(Huang et al., 1991). The research analytically 

obtained the shape of the electrode that maximizes 

the DEP force in the paper. In fact, this shape has 

been experimentally verified to maximize the DEP 

force. Therefore, it can be seen that the simulation 

results in this study agree with the known experi-

mental results.

To proceed with the optimal design in a more 

complex geometry, consider the case where the initial 

geometry is curved. In general, it is known that the 

shape smoothly inward curved is close to the optimal 
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shape for maximizing DEP Force. Therefore, we 

investigate the influence of the shape of the electrode 

on the size of the DEP force by performing the 

optimization in the commonly known curved geometry. 

The initial geometry with proper curvature, which 

does not distort the mesh distribution, is made to be 

Fig. 6(a) and optimization is performed shown in Fig. 

6(b). The design velocity field is the same as in the 

previous example and the order of B-spline function 

for design variable parameterization is 9 and the 

constraint volume is 50%.

Fig. 6 Shape optimization for initially curved example

As can be seen in Fig. 6, an electrode shape that is 

more inward than a smooth curve which is obtained 

in previous example. From this result, it can be seen 

that as the curve has more concave curvature inward, 

the magnitude of the DEP force increases. Therefore, 

if a higher magnitude of force is required to use the 

DEP force, it would be better to form the electric 

field by designing the center of the electrode more 

concave.

6. Conclusions

Using the finite element method and the efficient 

adjoint DSA method, a shape sensitivity analysis is 

derived for electrostatic problems in a steady state. 

In the FEM-based approach, it is possible to vary the 

boundary of a structure by directly placing the position 

of the nodal points for the design variables. In the 

FEM-based shape optimization, the shape of the 

boundary is wiggled due to many design variables, so 

the mesh quality is degraded at every optimization 

iteration. To solve this problem, design variables were 

parameterized by B-spline function and minimized 

Dirichlet energy function for every optimization iteration 

to maintain high mesh quality. Since the sensitivity 

of an analytically derived electrostatic problem is 

applied to an optimization algorithm, we can obtain a 

smooth convergence history. Through shape optimi-

zation research, we have obtained an optimal electrode 

shape that produces an electric field distribution. The 

achievement of this research will help to produce 

electrodes for the purpose of future research. 
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요  지

정전기 문제에 대한 연속체 기반 설계 민감도 해석(DSA) 방법을 해석적으로 유도하였다. 고차 항을 포함한 목적 함수를 

고려하기 위해 해석 및 DSA 방법을 위해 9 노드 유한요소법 기반 함수를 형상 함수로 사용하였다. 최적화 과정에서의 설계 

변수를 B- 스플라인 함수로 매개 변수화하여 비현실적인 형상이 아닌 부드러운 경계를 가진 최적 형상을 얻을 수 있었다. 

유한요소법을 이용한 최적화 과정에서 일반적으로 발생하는 메쉬 얽힘 문제를 해결하기 위해 메쉬 균일화 기법을 사용하였

다. 이 기법은 디리쉴릿 에너지 범함수를 최소화함으로써 메쉬 균일성을 자동으로 얻을 수 있게 한다. 몇 가지 수치 예제들

을 통해 DEP 힘을 최대화하기 위한 평행판의 최적 형상을 얻어낸다. 이를 기존에 실험적으로 검증된 평행판의 최적 형상과 

비교하여 그 특성을 논의하였다. 

핵심용어 : 정적 전기장, 형상 민감도 해석, 전극 형상 최적설계, 유전영동, 메쉬 균일화


