Browse > Article
http://dx.doi.org/10.5303/JKAS.2019.52.4.109

SEOUL NATIONAL UNIVERSITY AGN MONITORING PROJECT. I. STRATEGY AND SAMPLE  

Woo, Jong-Hak (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Son, Donghoon (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Gallo, Elena (Department of Astronomy, University of Michigan)
Hodges-Kluck, Edmund (Department of Astronomy, University of Michigan)
Jeon, Yiseul (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Shin, Jaejin (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Bae, Hyun-Jin (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Cho, Hojin (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Cho, Wanjin (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Kang, Daeun (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Kang, Wonseok (National Youth Space Center)
Karouzos, Marios (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Kim, Minjin (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
Kim, Taewoo (National Youth Space Center)
Le, Huynh Anh N. (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Park, Daeseong (Korea Astronomy and Space Science Institute)
Park, Songyoun (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Rakshit, Suvendu (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Sung, Hyun-il (Korea Astronomy and Space Science Institute)
Publication Information
Journal of The Korean Astronomical Society / v.52, no.4, 2019 , pp. 109-119 More about this Journal
Abstract
While the reverberation mapping technique is the best available method for measuring black hole mass in active galactic nuclei (AGNs) beyond the local volume, this method has been mainly applied to relatively low-to-moderate luminosity AGNs at low redshift. We present the strategy of the Seoul National University AGN Monitoring Project, which aims at measuring the time delay of the $H{\beta}$ line emission with respect to AGN continuum, using a sample of relatively high luminosity AGNs out to redshift z ~ 0.5. We present simulated cross correlation results based on a number of mock light curves, in order to optimally determine monitoring duration and cadence. We describe our campaign strategy based on the simulation results and the availability of observing facilities. We present the sample selection, and the properties of the selected 100 AGNs, including the optical luminosity, expected time lag, black hole mass, and Eddington ratio.
Keywords
galaxies: active; galaxies: nuclei; galaxies: Seyfert;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barth, A. J., Pancoast, A., Thorman, S. J., et al. 2011, The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50, ApJL, 743, L4   DOI
2 Barth, A. J., Bennert, V. N., Canalizo, G., et al. 2015, The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves, ApJS, 217, 26   DOI
3 Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Onken, C. A. 2006, The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements, ApJ, 644, 133   DOI
4 Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009, The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs, ApJ, 697, 160   DOI
5 Bentz, M. C., Horne, K., Barth, A. J., et al. 2010, The Lick AGN Monitoring Project: Velocity-delay Maps from the Maximum-entropy Method for Arp 151, ApJ, 720, L46   DOI
6 Bentz, M. C., Denney, K. D., Grier, C. J., et al. 2013, The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei, ApJ, 767, 149   DOI
7 Blandford, R. D., & McKee, C. F. 1982, Reverberation Mapping of the Emission Line Regions of Seyfert Galaxies and Quasars, ApJ, 255, 419   DOI
8 Boroson, T. A., & Green, R. F. 1992, The Emission-line Properties of Low-redshift Quasi-stellar Objects, ApJS, 80, 109   DOI
9 Davis, S.W.,Woo, J.-H., & Blaes, O. M. 2007, The UV Continuum of Quasars: Models and SDSS Spectral Slopes, ApJ, 668, 682   DOI
10 Du, P., Hu, C., Lu, K.-X., et al. 2015, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. $H{\beta}$ Time Lags and Implications for Super-Eddington Accretion, ApJ, 806, 22   DOI
11 Du, P., Lu, K.-X., Zhang, Z.-X., et al. 2016, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region, ApJ, 825, 126   DOI
12 Grier, C. J., Martini, P., Watson, L. C., et al. 2013, Stellar Velocity Dispersion Measurements in High-luminosity Quasar Hosts and Implications for the AGN Black Hole Mass Scale, ApJ, 773, 90   DOI
13 Fausnaugh, M. M., Grier, C. J., Bentz, M. C., et al. 2017, Reverberation Mapping of Optical Emission Lines in Five Active Galaxies, ApJ, 840, 97   DOI
14 Ferrarese, L., & Merritt, D. 2000, A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies, ApJL, 539, L9   DOI
15 Gebhardt, K., Bender, R., Bower, G., et al. 2000, A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion, ApJL, 539, L13   DOI
16 Grier, C. J., Trump, J. R., Shen, Y., et al. 2017, The Sloan Digital Sky Survey Reverberation Mapping Project: $H{\alpha}$ and $H{\beta}$ Reverberation Measurements from First-year Spectroscopy and Photometry, ApJ, 851, 21   DOI
17 Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei, ApJ, 533, 631   DOI
18 Lawrence, A., Saunders, W., Rowan-Robinson, M., et al. 1988, Extreme Fe II Emission from an IRAS Quasar, MNRAS, 235, 261   DOI
19 Kollmeier, J. A., Onken, C. A., Kochanek, C. S., et al. 2006, Black Hole Masses and Eddington Ratios at 0.3 < z < 4, ApJ, 648, 128   DOI
20 Kormendy, J., & Ho, L. C. 2013, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, ARA&A, 51, 511   DOI
21 Lira, P., Kaspi, S., Netzer, H., et al. 2018, Reverberation Mapping of Luminous Quasars at High z, ApJ, 865, 56   DOI
22 Markwardt, C. B. 2009, Non-linear Least-squares Fitting in IDL with MPFIT, in Astronomical Society of the Pacific Conference Series, Vol. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, & P. Dowler, 251
23 Pancoast, A., Brewer, B. J., Treu, T., et al. 2014, Modelling Reverberation Mapping Data - II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set, MNRAS, 445, 3073   DOI
24 Marziani, P., Zamanov, R. K., Sulentic, J. W., & Calvani, M. 2003, Searching for the Physical Drivers of Eigenvector 1: Influence of Black Hole Mass and Eddington Ratio, MNRAS, 345, 1133   DOI
25 Park, D., Woo, J.-H., Treu, T., et al. 2012, The Lick AGN Monitoring Project: Recalibrating Single-epoch Virial Black Hole Mass Estimates, ApJ, 747, 30   DOI
26 Park, S., Woo, J.-H., Romero-Colmenero, E., et al. 2017, Reverberation Mapping of PG 0934+013 with the Southern African Large Telescope, ApJ, 847, 125   DOI
27 Peterson, B. M. 1993, Reverberation Mapping of Active Galactic Nuclei, PASP, 105, 247   DOI
28 Shen, Y., Horne, K., Grier, C. J., et al. 2016, The Sloan Digital Sky Survey Reverberation Mapping Project: First Broad-line $H{\beta}$ and Mg II Lags at $z {\geq}0.3$ from Six-month Spectroscopy, ApJ, 818, 30   DOI
29 Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database, ApJ, 613, 682   DOI
30 Rakshit, S., Woo, J.-H., Gallo, E., et al. 2019, The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs, ApJ, submitted
31 Timmer, J., & Konig, M. 1995, On Generating Power Law Noise, A&A, 300, 707
32 Veron-Cetty, M.-P. & Veron, P. 2010, A Catalogue of Quasars and Active Galactic Nuclei: 13th Edition, A&A, 518, A10   DOI
33 Wandel, A., Peterson, B. M., & Malkan, M. A. 1999, Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques, ApJ, 526, 579   DOI
34 Woo, J.-H., Yoon, Y., Park, S., et al. 2015, The Black Hole Mass-Stellar Velocity Dispersion Relation of Narrow-line Seyfert 1 Galaxies, ApJ, 801, 38   DOI
35 Woo, J.-H., & Urry, C. M. 2002, Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities, ApJ, 579, 530   DOI
36 Woo, J.-H., Treu, T., Malkan, M. A., & Blandford, R. D. 2006, Cosmic Evolution of Black Holes and Spheroids. I. The $M_{BH}-{\sigma}_*$ Relation at z = 0.36, ApJ, 645, 900   DOI
37 Woo, J.-H., Schulze, A., Park, D., et al. 2013, Do Quiescent and Active Galaxies Have Different $M_{BH}-{\sigma}_*$ Relations?, ApJ, 772, 49   DOI
38 Zu, Y., Kochanek, C. S., Koz lowski, S., & Udalski, A. 2013, Is Quasar Optical Variability a Damped Random Walk?, ApJ, 765, 106   DOI
39 Woo, J.-H., Bae, H.-J., Son, D., & Karouzos, M. 2016, The Prevalence of Gas Outflows in Type 2 AGNs, ApJ, 817, 108   DOI
40 Zu, Y., Kochanek, C. S., & Peterson, B. M. 2011, An Alternative Approach to Measuring Reverberation Lags in Active Galactic Nuclei, ApJ, 735, 80   DOI