DOI QR코드

DOI QR Code

SEOUL NATIONAL UNIVERSITY AGN MONITORING PROJECT. I. STRATEGY AND SAMPLE

  • Woo, Jong-Hak (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Son, Donghoon (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Gallo, Elena (Department of Astronomy, University of Michigan) ;
  • Hodges-Kluck, Edmund (Department of Astronomy, University of Michigan) ;
  • Jeon, Yiseul (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Shin, Jaejin (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Bae, Hyun-Jin (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Cho, Hojin (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Cho, Wanjin (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Kang, Daeun (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Kang, Wonseok (National Youth Space Center) ;
  • Karouzos, Marios (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Minjin (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Kim, Taewoo (National Youth Space Center) ;
  • Le, Huynh Anh N. (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Park, Daeseong (Korea Astronomy and Space Science Institute) ;
  • Park, Songyoun (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Rakshit, Suvendu (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Sung, Hyun-il (Korea Astronomy and Space Science Institute)
  • Received : 2019.03.27
  • Accepted : 2019.06.13
  • Published : 2019.08.31

Abstract

While the reverberation mapping technique is the best available method for measuring black hole mass in active galactic nuclei (AGNs) beyond the local volume, this method has been mainly applied to relatively low-to-moderate luminosity AGNs at low redshift. We present the strategy of the Seoul National University AGN Monitoring Project, which aims at measuring the time delay of the $H{\beta}$ line emission with respect to AGN continuum, using a sample of relatively high luminosity AGNs out to redshift z ~ 0.5. We present simulated cross correlation results based on a number of mock light curves, in order to optimally determine monitoring duration and cadence. We describe our campaign strategy based on the simulation results and the availability of observing facilities. We present the sample selection, and the properties of the selected 100 AGNs, including the optical luminosity, expected time lag, black hole mass, and Eddington ratio.

Keywords

References

  1. Barth, A. J., Pancoast, A., Thorman, S. J., et al. 2011, The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50, ApJL, 743, L4 https://doi.org/10.1088/2041-8205/743/1/L4
  2. Barth, A. J., Bennert, V. N., Canalizo, G., et al. 2015, The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves, ApJS, 217, 26 https://doi.org/10.1088/0067-0049/217/2/26
  3. Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Onken, C. A. 2006, The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements, ApJ, 644, 133 https://doi.org/10.1086/503537
  4. Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009, The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs, ApJ, 697, 160 https://doi.org/10.1088/0004-637X/697/1/160
  5. Bentz, M. C., Horne, K., Barth, A. J., et al. 2010, The Lick AGN Monitoring Project: Velocity-delay Maps from the Maximum-entropy Method for Arp 151, ApJ, 720, L46 https://doi.org/10.1088/2041-8205/720/1/L46
  6. Bentz, M. C., Denney, K. D., Grier, C. J., et al. 2013, The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei, ApJ, 767, 149 https://doi.org/10.1088/0004-637X/767/2/149
  7. Blandford, R. D., & McKee, C. F. 1982, Reverberation Mapping of the Emission Line Regions of Seyfert Galaxies and Quasars, ApJ, 255, 419 https://doi.org/10.1086/159843
  8. Boroson, T. A., & Green, R. F. 1992, The Emission-line Properties of Low-redshift Quasi-stellar Objects, ApJS, 80, 109 https://doi.org/10.1086/191661
  9. Davis, S.W.,Woo, J.-H., & Blaes, O. M. 2007, The UV Continuum of Quasars: Models and SDSS Spectral Slopes, ApJ, 668, 682 https://doi.org/10.1086/521393
  10. Du, P., Hu, C., Lu, K.-X., et al. 2015, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. $H{\beta}$ Time Lags and Implications for Super-Eddington Accretion, ApJ, 806, 22 https://doi.org/10.1088/0004-637X/806/1/22
  11. Du, P., Lu, K.-X., Zhang, Z.-X., et al. 2016, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region, ApJ, 825, 126 https://doi.org/10.3847/0004-637X/825/2/126
  12. Fausnaugh, M. M., Grier, C. J., Bentz, M. C., et al. 2017, Reverberation Mapping of Optical Emission Lines in Five Active Galaxies, ApJ, 840, 97 https://doi.org/10.3847/1538-4357/aa6d52
  13. Ferrarese, L., & Merritt, D. 2000, A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies, ApJL, 539, L9 https://doi.org/10.1086/312838
  14. Gebhardt, K., Bender, R., Bower, G., et al. 2000, A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion, ApJL, 539, L13 https://doi.org/10.1086/312840
  15. Grier, C. J., Martini, P., Watson, L. C., et al. 2013, Stellar Velocity Dispersion Measurements in High-luminosity Quasar Hosts and Implications for the AGN Black Hole Mass Scale, ApJ, 773, 90 https://doi.org/10.1088/0004-637X/773/2/90
  16. Grier, C. J., Trump, J. R., Shen, Y., et al. 2017, The Sloan Digital Sky Survey Reverberation Mapping Project: $H{\alpha}$ and $H{\beta}$ Reverberation Measurements from First-year Spectroscopy and Photometry, ApJ, 851, 21 https://doi.org/10.3847/1538-4357/aa98dc
  17. Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei, ApJ, 533, 631 https://doi.org/10.1086/308704
  18. Kollmeier, J. A., Onken, C. A., Kochanek, C. S., et al. 2006, Black Hole Masses and Eddington Ratios at 0.3 < z < 4, ApJ, 648, 128 https://doi.org/10.1086/505646
  19. Kormendy, J., & Ho, L. C. 2013, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, ARA&A, 51, 511 https://doi.org/10.1146/annurev-astro-082708-101811
  20. Lawrence, A., Saunders, W., Rowan-Robinson, M., et al. 1988, Extreme Fe II Emission from an IRAS Quasar, MNRAS, 235, 261 https://doi.org/10.1093/mnras/235.1.261
  21. Lira, P., Kaspi, S., Netzer, H., et al. 2018, Reverberation Mapping of Luminous Quasars at High z, ApJ, 865, 56 https://doi.org/10.3847/1538-4357/aada45
  22. Markwardt, C. B. 2009, Non-linear Least-squares Fitting in IDL with MPFIT, in Astronomical Society of the Pacific Conference Series, Vol. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, & P. Dowler, 251
  23. Marziani, P., Zamanov, R. K., Sulentic, J. W., & Calvani, M. 2003, Searching for the Physical Drivers of Eigenvector 1: Influence of Black Hole Mass and Eddington Ratio, MNRAS, 345, 1133 https://doi.org/10.1046/j.1365-2966.2003.07033.x
  24. Park, D., Woo, J.-H., Treu, T., et al. 2012, The Lick AGN Monitoring Project: Recalibrating Single-epoch Virial Black Hole Mass Estimates, ApJ, 747, 30 https://doi.org/10.1088/0004-637X/747/1/30
  25. Park, S., Woo, J.-H., Romero-Colmenero, E., et al. 2017, Reverberation Mapping of PG 0934+013 with the Southern African Large Telescope, ApJ, 847, 125 https://doi.org/10.3847/1538-4357/aa88a3
  26. Pancoast, A., Brewer, B. J., Treu, T., et al. 2014, Modelling Reverberation Mapping Data - II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set, MNRAS, 445, 3073 https://doi.org/10.1093/mnras/stu1419
  27. Peterson, B. M. 1993, Reverberation Mapping of Active Galactic Nuclei, PASP, 105, 247 https://doi.org/10.1086/133140
  28. Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database, ApJ, 613, 682 https://doi.org/10.1086/423269
  29. Rakshit, S., Woo, J.-H., Gallo, E., et al. 2019, The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs, ApJ, submitted
  30. Shen, Y., Horne, K., Grier, C. J., et al. 2016, The Sloan Digital Sky Survey Reverberation Mapping Project: First Broad-line $H{\beta}$ and Mg II Lags at $z {\geq}0.3$ from Six-month Spectroscopy, ApJ, 818, 30 https://doi.org/10.3847/0004-637X/818/1/30
  31. Timmer, J., & Konig, M. 1995, On Generating Power Law Noise, A&A, 300, 707
  32. Veron-Cetty, M.-P. & Veron, P. 2010, A Catalogue of Quasars and Active Galactic Nuclei: 13th Edition, A&A, 518, A10 https://doi.org/10.1051/0004-6361/201014188
  33. Wandel, A., Peterson, B. M., & Malkan, M. A. 1999, Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques, ApJ, 526, 579 https://doi.org/10.1086/308017
  34. Woo, J.-H., & Urry, C. M. 2002, Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities, ApJ, 579, 530 https://doi.org/10.1086/342878
  35. Woo, J.-H., Treu, T., Malkan, M. A., & Blandford, R. D. 2006, Cosmic Evolution of Black Holes and Spheroids. I. The $M_{BH}-{\sigma}_*$ Relation at z = 0.36, ApJ, 645, 900 https://doi.org/10.1086/504586
  36. Woo, J.-H., Schulze, A., Park, D., et al. 2013, Do Quiescent and Active Galaxies Have Different $M_{BH}-{\sigma}_*$ Relations?, ApJ, 772, 49 https://doi.org/10.1088/0004-637X/772/1/49
  37. Woo, J.-H., Yoon, Y., Park, S., et al. 2015, The Black Hole Mass-Stellar Velocity Dispersion Relation of Narrow-line Seyfert 1 Galaxies, ApJ, 801, 38 https://doi.org/10.1088/0004-637X/801/1/38
  38. Woo, J.-H., Bae, H.-J., Son, D., & Karouzos, M. 2016, The Prevalence of Gas Outflows in Type 2 AGNs, ApJ, 817, 108 https://doi.org/10.3847/0004-637X/817/2/108
  39. Zu, Y., Kochanek, C. S., & Peterson, B. M. 2011, An Alternative Approach to Measuring Reverberation Lags in Active Galactic Nuclei, ApJ, 735, 80 https://doi.org/10.1088/0004-637X/735/2/80
  40. Zu, Y., Kochanek, C. S., Koz lowski, S., & Udalski, A. 2013, Is Quasar Optical Variability a Damped Random Walk?, ApJ, 765, 106 https://doi.org/10.1088/0004-637X/765/2/106