• Title/Summary/Keyword: continuous skyline query

Search Result 16, Processing Time 0.027 seconds

Efficient Skyline Query Processing Scheme in Mobile P2P Networks (모바일 P2P 네트워크에서 효율적인 스카이라인 질의 처리 기법)

  • Bok, Kyoung-Soo;Park, Sun-Yong;Kim, Dae-Yeon;Lim, Jong-Tae;Shin, Jae-Ryong;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.30-42
    • /
    • 2015
  • In this paper, we propose a new skyline query processing scheme to enhance accuracy of query processing and communication cost in mobile P2P environments. The proposed scheme consists of three stages such as the pre-skyline processing, the query transmission range extension policy, and the continuous skyline query processing. In the pre-skyline processing, a peer selects the candidate filtering objects who have the potential to be selected. By doing so, the proposed scheme reduces the filtering cost when processing the query. In the query transmission range extension policy, we have improved the accuracy by extending the query transmission range. In addition, it can handle continuous skyline query by performing the monitoring after the first skyline query processing. In order to show the superiority of the proposed method, we compare it with the existing schemes through performance evaluation. As a result, it was shown that the proposed scheme outperforms the existing schemes.

Efficient Continuous Skyline Query Processing Scheme over Large Dynamic Data Sets

  • Li, He;Yoo, Jaesoo
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1197-1206
    • /
    • 2016
  • Performing continuous skyline queries of dynamic data sets is now more challenging as the sizes of data sets increase and as they become more volatile due to the increase in dynamic updates. Although previous work proposed support for such queries, their efficiency was restricted to small data sets or uniformly distributed data sets. In a production database with many concurrent queries, the execution of continuous skyline queries impacts query performance due to update requirements to acquire exclusive locks, possibly blocking other query threads. Thus, the computational costs increase. In order to minimize computational requirements, we propose a method based on a multi-layer grid structure. First, relational data object, elements of an initial data set, are processed to obtain the corresponding multi-layer grid structure and the skyline influence regions over the data. Then, the dynamic data are processed only when they are identified within the skyline influence regions. Therefore, a large amount of computation can be pruned by adopting the proposed multi-layer grid structure. Using a variety of datasets, the performance evaluation confirms the efficiency of the proposed method.

On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

  • Yin, Bo;Zhou, Siwang;Zhang, Shiwen;Gu, Ke;Yu, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1931-1953
    • /
    • 2017
  • The reverse skyline query plays an important role in information searching applications. This paper deals with continuous reverse skyline queries in sensor networks, which retrieves reverse skylines as well as the set of nodes that reported them for continuous sampling epochs. Designing an energy-efficient approach to answer continuous reverse skyline queries is non-trivial because the reverse skyline query is not decomposable and a huge number of unqualified nodes need to report their sensor readings. In this paper, we develop a new algorithm that avoids transmission of updates from nodes that cannot influence the reverse skyline. We propose a data mapping scheme to estimate sensor readings and determine their dominance relationships without having to know the true values. We also theoretically analyze the properties for reverse skyline computation, and propose efficient pruning techniques while guaranteeing the correctness of the answer. An extensive experimental evaluation demonstrates the efficiency of our approach.

An Efficient Pre-computing Method for Processing Continuous Skyline Queries in Road Networks (도로망에서 연속적인 스카이라인 절의처리를 위한 효율적인 전처리기법)

  • Jang, Su-Min;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.314-320
    • /
    • 2009
  • Skyline queries have recently received considerable attention in the searching services. The skyline contains interesting objects that are not dominated by any other objects on all dimensions. Many related works have processed a skyline on static data or on moving objects in Euclidean space. However, this paper assumes that the point of a skyline query continuously moves in road networks. We propose a new method that efficiently processes continuous skyline queries in road networks through pre-computed shortest range data of objects. Our experiments show that the proposed method is about 100 times faster than previous methods in terms of query processing time.

An Efficient Continuous Reverse Skyline Query Processing Method in Metric Spaces for Location-based Services (위치기반 서비스를 위한 거리공간에서의 효율적인 연속 리버스 스카이라인 질의 처리 기법)

  • Lim, Jong-Tae;Park, Yong-Hun;Seo, Dong-Min;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.250-257
    • /
    • 2010
  • As the variant of skyline query processing, reverse skyline Queries have been studied. However, the existing methods for processing reverse skyline Queries have the limitation of service domains and spend high costs to provide various location-based services. In this paper, we propose a new reverse skyline Query processing method that efficiently processes a query with the objects in metric spaces. In addition, the proposed method also processes continuous reverse skyline queries efficiently. In order to show the superiority of the proposed scheme, we compare it with the previous reverse skyline 벼ery processing scheme in various environments. As a result, the proposed method achieves better performance than the existing method.

An Efficient Grid Method for Continuous Skyline Computation over Dynamic Data Set

  • Li, He;Jang, Su-Min;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Skyline queries are an important new search capability for multi-dimensional databases. Most of the previous works have focused on processing skyline queries over static data set. However, most of the real applications deal with the dynamic data set. Since dynamic data set constantly changes as time passes, the continuous skyline computation over dynamic data set becomes ever more complicated. In this paper, we propose a multiple layer grids method for continuous skyline computation (MLGCS) that maintains multiple layer grids to manage the dynamic data set. The proposed method divides the work space into multiple layer grids and creates the skyline influence region in the grid of each layer. In the continuous environment, the continuous skyline queries are only handled when the updating data points are in the skyline influence region of each layer grid. Experiments based on various data distributions show that our proposed method outperforms the existing methods.

Multiple Continuous Skyline Query Processing Over Data Streams (다중 연속 스카이라인 질의의 효율적인 처리 기법)

  • Lee, Yu-Won;Lee, Ki-Yong;Kim, Myoung-Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.165-179
    • /
    • 2010
  • Recently, the processing of data streams such as stock quotes, buy-sell orders, and billing records becomes more important in e-Business environments. Especially, the use of skyline queries over data streams is rapidly increasing to support multiple criteria decision making. Given a set of multi-dimensional tuples, a skyline query retrieves a set of tuples which are not dominated by other tuples. Although there has been much work on processing skyline queries over static datasets, there has been relatively less work on processing multiple skyline queries over data streams. In this paper, we propose an efficient method for processing multiple continuous skyline queries over data streams. The proposed method efficiently identifies which tuple is a skyline tuple of which query, resulting in a lower cost of processing multiple skyline queries. Through performance evaluation, we show the performance advantage of the proposed method.

Efficient Processing using Static Validity Circle for Continuous Skyline Queries (연속적인 스카이라인 질의의 정적 유효 영역을 이용한 효율적인 처리)

  • Li, Zhong-He;Park, Young-Bae
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.631-643
    • /
    • 2006
  • Moving objects in a mobile environment to change their position based on the change of time require a query with their position as a basis. Efficient Regional Decision for Continuous Skyline Queries requires objectively pre-calculating the OSR(Optimal Skyline Region) regardless of the speed and direction of the moving objects. It proposes techniques to reduce the frequency of continuous queries by choosing a VCircle(Validity Circle) as safe location which has radius of the distance to the closest region with position on the moving object at center. But, a VCircle's area varies based on the Moving object's position from first marked time of continuous query. Therefore, the frequency of its continuous query is variable and also when the object moves inside of OSR, query can re-occur frequently In this paper, we suggest a technique of selecting an IVCircle(Interior Validity Circle) in a Skyline Region as the static Safe Region using the characteristics of the OSR. An Interior IVCircle can be calculated in advance when the OSR is decided. Our experiment shows that the frequency of using IVcircle as safe region reduced than that of using VCircle as safe region by 52.55%.

A Bottom up Filtering Tuple Selection Method for Continuous Skyline Query Processing in Sensor Networks (센서 네트워크에서 연속 스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법)

  • Sun, Jin-Ho;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.280-291
    • /
    • 2009
  • Skyline Query processing is important to wireless sensor applications in order to process multi-dimensional data efficiently. Most skyline researches about sensor network focus on minimizing the energy consumption due to the battery powered constraints. In order to reduce energy consumption, Filtering Method is proposed. Most existing researches have assumed a snapshot skyline query processing and do not consider continuous queries and use data generated in ancestor node. In this paper, we propose an energy efficient method called Bottom up filtering tuple selection for continuous skyline query processing. Past skyline data generated in child nodes are stored in each sensor node and is used when choosing filtering tuple. We also extend the algorithms, called Support filtering tuple(SFT) that is used when we choose the additional filtering tuple. There is a temporal correlation between previous sensing data and recent sensing data. Thus, Based on past data, we estimate current data. By considering this point, we reduce the unnecessary communication cost. The experimental results show that our method outperforms the existing methods in terms of both data reduction rate(DRR) and total communication cost.

An Energy Efficient Continuous Skyline Query Processing Method in Wireless Sensor Networks (무선 센서 네트워크 환경에서 에너지 효율적인 연속 스카이라인 질의 처리기법)

  • Seong, Dong-Ook;Yeo, Myung-Ho;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.289-293
    • /
    • 2009
  • In sensor networks, many methods have been proposed to process in-network aggregation effectively. Contrary to normal aggregation queries, skyline query processing that compare multi-dimension data for producing result is very hard. It is important to filter unnecessary data for energy-efficient skyline query processing. Existing approach like MFTAC restricts unnecessary data transitions by deploying filters to whole sensors. However, network lifetime is reduced by energy consumption for filters transmission. In this paper, we propose a lazy filtering-based skyline query processing algorithm of in-network for reducing energy consumption by filters transmission. The proposed algorithm creates the skyline filter table (SFT) in the data gathering process which sends from sensor nodes to the base station and filters out unnecessary transmissions using it. The experimental results show that the proposed algorithm reduces false positive by 53% and improves network lifetime by 44% on average over MFTAC.