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Abstract 
 

The reverse skyline query plays an important role in information searching applications. This 
paper deals with continuous reverse skyline queries in sensor networks, which retrieves 
reverse skylines as well as the set of nodes that reported them for continuous sampling epochs. 
Designing an energy-efficient approach to answer continuous reverse skyline queries is 
non-trivial because the reverse skyline query is not decomposable and a huge number of 
unqualified nodes need to report their sensor readings. In this paper, we develop a new 
algorithm that avoids transmission of updates from nodes that cannot influence the reverse 
skyline. We propose a data mapping scheme to estimate sensor readings and determine their 
dominance relationships without having to know the true values. We also theoretically analyze 
the properties for reverse skyline computation, and propose efficient pruning techniques while 
guaranteeing the correctness of the answer. An extensive experimental evaluation 
demonstrates the efficiency of our approach. 
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1. Introduction 

A wireless sensor network (WSN) is a collection of sensor nodes, which are responsible for 
sensing the surrounding environment and collaborating with each other to relay the sensed 
data to a centralized location or sink to answer user queries. Conventional queries, such as 
top-k queries [1], and nearest neighbor queries [2], have yet been successfully adapted to WSN 
networks. The success of such queries and development of WSN hardware techniques 
undoubtedly encourage further attempts to adapt more complicated queries to the WSNs [3]. 
As an important query operator for intelligent decision over complex data, where multiple and 
often conflicting criteria are considered, the skyline operator [4] and its variants [5]-[16] have 
been extensively studied recently. In this paper, we study the problem of answering 
continuous reverse skyline query in WSNs, which seeks to find the reverse skylines as well as 
the full set of nodes that reported them for a number of continuous sampling epochs.  

To explain reverse skyline, we explain dynamic skyline first. The dynamic skyline [5] 
considers “relative” values, i.e., the coordinate-wise distances between data points and a 
user-given query point, and returns all those points that are not dominated by any other point 
with respect to the query point. Specifically, a point p1 dominates another p2, if the distance is 
not larger than that of p2 on every dimension, and smaller on at least one dimension. Fig. 1(a) 
shows an example of dynamic skyline of point p8. Each point p=(p[1], p[2]) in original 2D 
space is transformed to a point p’=(|p[1]-p8[1]|, |p[2]-p8[2]|) in 2D distance space. The dynamic 
skyline of p8 is {p3, p6, q}. The dynamic skyline query produces interesting points from the 
“user” perspective, that is, users who are interested in p8 are likely to be interested in dynamic 
skyline points p3, p6 and q. Based on dynamic skyline, a reverse skyline query retrieves a set of 
points whose dynamic skyline contains the query point [6]. Fig. 1(b) shows the reverse skyline 
set of query point q. Since q is contianed in the dynamic skyline of p8, p8 is contained in the 
reverse skyline of q. The same holds for p3 and p6. Hence, the reverse skyline set of q is {p3, p6 , 
p8}. The reverse skyline focuses on the “companies” perspective. It means that users in reverse 
skyline set would have been interested in the company product q. Continuous reverse skyline 
query is very useful in many WSN applications. 
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Fig. 1. Reverse skyline example 

 
Scenario 1. For providing valuable services for gardeners (e.g., where and what to plant), 

sensors are deployed to monitor weather and soil conditions (temperature, humidity, light, 
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etc.). The plant species are represented by their preferences on different environment 
parameters. The query point q is specified as particular monitoring areas. If a plant species is in 
the reverse skyline of q, this species would prefer the area that q represents. Then, plant 
species appear most in one-day reverse skyline query results is considered to be planted at q. 
Given some new locations, the results of reverse skyline querying can also be employed to 
seek the suitable area that more plant species are interested in. 

Scenario 2. In underground coal mines, to ensure safe working conditions for miners, we 
may use sensor networks to collect data, such as gas density, oxygen density, and water depth. 
Let us treat the critical values of possible disasters as query q, and continuously pose reverse 
skyline query. If most of the query results in a period of time (e.g., 15 minutes) come from a 
particular node (or its neighbors), the located area is probably in dangerous state.  

Challenge. Answering continuous reverse skyline query in WSNs is non-trivial. As the 
reverse skyline operator is not decomposable, even if a point is identified as not belonging to 
the query results, this point cannot be simply discarded. Otherwise, false-positive results can 
occur. Therefore, during the query processing, a great number of unqualified data points are 
transferred over the network for the final results, which incurs high communication cost. 

Limitations of the State-of-the-art techniques. The reverse skyline query has been 
extensively studied ever since it was introduced in [6]. In addition to traditional reverse 
skyline query [6,7], a variety of query variants have been studied, such as why-not reverse 
skyline query [8], bichromatic reverse skyline query [9]-[12], ranked reverse skyline query 
[13], group-by reverse skyline[14], and reverse skyline over sliding windows [15,16], and 
different application environments are considered, such as non-metric space[17], mapreduce 
framework [18], uncertain database [19], and moving scenario [20]. Nevertheless, most 
existing studies focus on snapshot queries in centralized systems. Their approaches employ 
centralized data structures like R-tree and are optimized for processing cost.  

The most related works are [16] and [21], which study reverse skyline query in WSNs. The 
approach in [21] is designed for snapshot queries and works on the idea of converting the 
reverse skyline problem into a full skyline problem such that in-network processing can be 
utilized to reduce the network traffic. This approach is extended to handle reverse skyline 
queries over sliding windows in [16]. Although the snapshot reverse skyline results could be 
extended to answer the reverse skyline query in one or several sampling epochs, it may incur 
significant overhead. This is because, every sensor node needs to report its sensor reading at 
each query time. Nevertheless, most of those sensor readings may not belong to the final 
results. Furthermore, data points are pruned based on routing information, not global 
information, which greatly decreases the pruning effectiveness. 

Contributions. In this paper, we propose a new algorithm, called efficient computation of 
reverse skyline (ECRS), which avoids transmission of updates from nodes that cannot 
influence the reverse skyline. Our basic idea is to utilize mapping information of sensor 
readings to identify nodes that produced reverse skylines and prune nodes that cannot belong 
to the final results. We first propose a mapping scheme, which maps a sensor reading to a 
hypersquare that bounds the value of every attribute of the sensor reading. The hypersquare 
can be represented by its center and the deviation, where the center is a history sensor reading 
which is archived at both source node and the sink.  Hence, in stead of reporting the true sensor 
readings, sensor nodes send the one-dimension deviations of the hypersquares to the sink. 
Based on archived history data and received deviations, the sink can reconstruct the 
hypersquares of sensor nodes. We then theoretically analyze the properties for reverse skyline 
computation, and propose efficient pruning techniques while guaranteeing the correctness of 

http://www.sciencedirect.com/science/article/pii/S0098299707000854
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the answer. Sensor nodes that can be pruned are excluded from the query results. In order to 
minimize the number of nodes that need to report their sensor readings, the sink conducts a 
pull-based acquisition of sensor readings from nodes whose sensor readings are determined as 
part of the reverse skyline set, such that these new obtained sensor readings can be used to 
prune more nodes. In summary, we make the following contributions in this paper.  
 We propose an efficient algorithm that computes continuous reverse skyline in sensor 

networks. In order to reduce the communication cost, our proposed approach uses 
mapping information to identify nodes that produced reverse skylines and suppress 
unnecessary data retrieval. 

 We propose a data mapping scheme which maps sensor readings to hypersquares, 
such that we can determine the dominance relationships of the sensor readings without 
having to know their true values.  

 We theoretically analyze the properties for reverse skyline computation. We propose 
pruning techniques to reduce the number of nodes that need to report their sensor 
readings while guaranteeing the correctness of the answer. 

 Finally, we conduct extensive experimental study to evaluate the effectiveness of our 
algorithm. 

The remaining part of this paper proceeds as follows: Section 2 reviews the related work 
and presents the preliminaries. Section 3 presents our proposed data mapping scheme. In 
section 4, we exploit the properties for reverse skyline computation based on mapped data. 
Section 5 presents the ECRS algorithm. Section 6 reports on experiments. Finally, we 
conclude in Section 7. 

2. Related Work and Preliminaries 

2.1 Related Work  
The concept of reverse skyline is first introduced by Dellis and Seeger [6].The proposed 
algorithm firstly computes the global skyline points, a super set of the reverse skyline, and 
then determines reverse skyline points using window queries. Gao et al. [7] proposed a reuse 
mechanism to avoid multiple traversal of the R-tree to improve the performance of [6].  

In addition to traditional reverse skyline query, a variety of query variants are studied as 
well. Islam et al. [8] addressed the problem of answering why-not questions in reverse skyline 
queries. Wu et al. [9] studied the bichromatic reverse skyline, and proposed several non-trivial 
heuristics to optimize the access order of R-tree to reduce I/O cost. Arvanitis et al. [10] 
proposed queue-based data structures to reduce processing cost of [9]. Lian et al.[11] 
considered bichromatic reverse skyline for uncertain datasets. Jiang et al. [12] studied the 
mutual reverse skyline queries and proposed and proposed several heap-based algorithms. 
Gao et al. [13] proposed data-partitioning index for ranked reverse skyline queries. Recently, 
the group-by reverse skyline query is studied in [14]. Works of [15] and [16] considered 
reverse skyline over sliding windows. 

The reverse skyline queries under different application environments are also explored. 
Deshpande et al. [17] considered reverse skyline query with non-metirc similarity measures. 
The proposed algorithm utilized group-level reasoning and early pruning to reduce attribute 
level comparison. Park et al. [18] proposed efficient parallel algorithms for processing reverse 
skyline query using MapReduce. Bai et al. [19] proposed some probability pruning techniques 
for reverse skyline query over uncertain data stream. Lim et al. [20] considered moving objects, 
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and proposed to make a verification range to reduce the search space and utilize the spatial 
index to improve the query efficiency. 

Wang et al. [21] proposed a concept, called full skyline, as the set of candidate reverse 
skyline points. Since the full skyline query is decomposable, in-network processing can be 
utilized to reduce the network traffic during the query processing. Min et al.[16] extended the 
approach of [21] to handle reverse skyline queries over sliding windows. As discussed in 
Section 1, although the snapshot reverse skyline results [21] could be extended to answer the 
reverse skyline query in one or several time epochs, it may incur significant overhead. To 
answer continuous reverse skyline queries, we propose a query execution mechanism to avoid 
the updates from nodes not contributing to the final results. We propose a mapping scheme and 
pruning techniques to reduce the nodes that need to report their sensor readings. Since the 
pruning requirements are relaxed compared with that in [21] and extended for node pruning, 
our pruning techniques are much more efficient. Finally, [21] does not produce reverse skyline 
results progressively, in contrast to our approach. 

There are some studies on skyline queries in WSNs. Chen et al. [22] considered continuous 
skyline computation, and used hierarchical thresholds to to reduce the transmission traffic. 
Kwon et al. [23] selected point closest to the origin  as the filter, based on the idea that a point 
much closer to the origin has a higher pruning capability. Xin et al. [24] devised two types of 
filters, i.e., the grid filter and the tuple filter, for different data distributions. Liang et al. [25] 
proposed to use multiple points rather than a single point as the filter. The above methods 
assume that the sensor reading of each node is just stored locally. Differently, Su et al. [26] 
proposed a cluster-based architecture to store sensing readings, and proposed algorithms to 
avoid the need of collecting data from all nodes in the network. Different from these studies, in 
this paper we focuses on how to support continuouse reverse skyline queries in WSNs. 

2.2 Preliminaries  
We assume a cluster-based sensor network [27], which extends the network lifetime and 
supports network scalability by grouping sensor nodes into clusters. Data collected by sensor 
nodes are first forwarded to corresponding cluster-heads. Then the cluster-heads route 
aggregated data of their clusters toward the sink to answer user queries. Each senor node si 
produces a d-dimensional point ( [1], [2], , [ ])t t t t

i i i ip p p p d=   at sampling epoch t. We omit the 
time epoch when it is clear from the context.  
Definition 1 (Continuous reverse skyline query in WSN). The continuous reverse skyline 
query retrieves the set of reverse skyline points RSKt with respect to query point q, for each 
sampling epoch t, as well as the set of nodes St that generated the reverse skyline points. 
Definition 2 (Reverse Skyline [6]). Given a dataset D and a query point q, the reverse skyline 
with respect to q is a set of points whose dynamic skyline includes q. That is, a point oϵD is a 
reverse skyline point of q, iff ∄pϵD such that (1) |p[m]-o[m]|≤|q[m]-o[m]|for all m, and (2) 
|p[k]-o[k]|<|q[k]-o[k]|for at least one k. 

3. Mapping Data into ε-hypersquares 
The purpose of data mapping is to obtain approximate views of sensor readings, such that we 
can identify those nodes that produced reverse skyline points, and perform node pruning 
without having to know the true observation values. Due to spatio-temporal correlation among 
sensor readings, we propose to represent the approximate views based on history data. Note 
that, we archive a history sensor reading for each node at both the sink and source node in our 
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ECRS approach. Let r
ip  and t

ip be the archived history and the current sensor readings of 
node si, respectively. We map t

ip to an ε-hypersquare t
iF centering at r

ip with side length 2 t
iε . 

Since si and sink maintain the same r
ip ,  si only sends t

iε to the sink which then reconstructs
t

iF as the approximate view of t
ip . We call t

iε the deviation of t
ip . Obviously, t

iF is the 
minimum bounding hypersquare that centers at r

ip and covers t
ip .  The maintainance and 

updation of history point r
ip will be detailed in Section 5. 

Definition 3 (ε-hypersquare). Given two data points t
ip and r

ip , the ε-hypersquare of t
ip , 

denoted as t
iF , is the hypersquare centering at r

ip with side length 2 t
iε , where t

iε =  

1max | [ ] [ ] |r t
m d i ip m p m≤ ≤ − .  

An ε-hypersquare t
iF is represented by two corner points, i.e., the nearest corner t

il and the 
furthest corner t

iu  (to the query q). By conducting dominance tests among those corner points, 
we will justify whether or not the true observations are reverse skylines. We now formulate the 
computation of corner points. As shown in Fig. 2, the data space is cut into 2d quadrants with d 
orthogonal hyper-planes. Note that whether point p is a reverse skyline point only depends on 
data points in the same quadrant. Points on quadrant intersection planes belong to all 
intersection quadrants. In order to get located quadrant of t

ip based on r
ip , we assume that t

ip
and r

ip are in the same quadrant and r
ip is not on quadrant intersection planes. When t

iF is 
inside only one quadrant (Fig. 2(a)), corner points are calculated with Eq. (1) and Eq. (2). 
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Otherwise, we only need the part of t

iF in the quadrant that r
ip lies in. For this purpose, as 

illustrated in Fig. 2(b), we treat point pvi, which is on the quadrant intersection planes and 
nearest to q, as the new t

il as follows: 

 

max( [ ], [ ]) | [ ] [ ]
[ ] ,1 .

min( [ ], [ ]) | [ ] [ ]

t r
i i

i t r
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l m q m q m p m
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>
                                  (3) 
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Fig. 2. Example of data mapping 

4. Properties for Reverse Skyline Computation Based on Mapped Data 
There are three aspects in reverse skyline calculation. These are: (1) identifying points that 
belong to reverse skyline query results; (2) identifying points that cannot belong to query 
results; and (3) safely pruning points not contributing to the final results. Recall that, in our 
mapping scheme, data points (i.e., the sensor readings) are represented with ε-hypersquares. 
Hence, we need to coduct the above three aspects based on mapped data. Given a sensor node 
represented with an ε-hypersquare, if its true data point can be pruned, this node need not to 
report its data point and it is immediately discarded. Furthermore, if the data point is 
determined as part of the reverse skyline set, we will conduct a pull-based acquisition of the 
true observations from the nodes, and these observations will be used to prune more 
unqualified nodes. Hence, in the following illustration of properties for reverse skyline 
computation, we consider a mixed set of sensor readings and ε-hypersquares.  

4.1 Identifying Reverse Skyline Points 
Given a point p, the reverse skyline dominance region of p, denoted as RSDR(p), is the set of 
points dynamically dominating q with respect to p. Clearly, pϵRSK(q) iff ∄oϵRSDR(p). To 
illustrate, consider the rectangle with q as a corner point and centered at p in Fig. 3(a). We 
emphasize that RSDR(p) is this hyper-rectangle except corners points. Points in RSDR region 
can be justified based on the “semidominance” concept [21], that is, oϵRSDR(p) if and only if 
o semidominates p. Specifically, point o semidominates p with respect to q, if: (1) 
| [ ] [ ] | 2 | [ ] [ ] |o m q m p m q m− ≤ − and ( [ ] [ ])( [ ] [ ] ) 0o m q m p m q m− − ≥ for all m, and (2) 
| [ ] [ ] | 2 | [ ] [ ] |o k q k p k q k− < − and ( [ ] [ ])( [ ] [ ]) 0o k q k p k q k− − >  for at least one k. 
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When data points are mapped into ε-hypersquares, intuitively, given an ε-hypersquare
( , )t t t

i i iF l u , if there does not exist another ( , )t t t
h h hF l u such that t

hl falls in RSDR( t
iu ), then t

hp
cannot be in RSDR( t

ip ). Nevertheless, it is not always true. For example, in Fig. 3(b), 2
tl  does 

not lie in RSDR( 1
tu ), but its true observation 2

tp is in RSDR( 1
tp ). This is because 2

tl  is a corner 
of the rectangle with q as a corner point and centered at 1

tu . As stated earlier, RSDR( 1
tu ) does 

not contain the corners, and thus, 2
tl does not belong to RSDR( 1

tu ). To solve the problem, we 
define the extended semidominance (e-dominance) and prove two propositions (Proposition 1 
and Proposition 2) that help to identify reverse skyline points from mapped data. 
Definition 4 (Extended semidominance): A point p1 extendly semidominates (e-dominates) 
another point p2 with respect to q, if (1) 1 2| [ ] [ ] | 2 | [ ] [ ] |p m q m p m q m− ≤ − and 

1 2( [ ] [ ])( [ ] [ ] ) 0p m q m p m q m− − ≥ for all m, and (2) 1 2| [ ] [ ] | 2 | [ ] [ ] |p k q k p k q k− < − and

1 2( [ ] [ ])( [ ] [ ]) 0p k q k p k q k− − > , or 1[ ] [ ] 0p k q k− = , for at least one k. 

Proposition 1. Point t
ip is a reverse skyline point, if ∄ t

jp such that t
jp semidominates t

ip and ∄

( , )t t t
h h hF l u  such that t

hl e-dominates t
ip . 

Proof. We prove the proposition using reduction to absurdity. Suppose that t t
iP RSK∉ , then

t
hp semidominates t

ip . Hence, m d∀ ∈ , | [ ] [ ] | 2 | [ ] [ ] |t t
h ip m q m p m q m− ≤ − and ( [ ]t

ip m −  
[ ])( [ ] [ ]) 0t

hq m p m q m− ≥ , and k d∃ ∈ , | [ ] [ ] | 2 | [ ] [ ] |t t
h ip k q k p k q k− < − and ( [ ] [ ])t

ip k q k−  
( [ ] [ ]) 0t

hp k q k− > . For the nearest corner t
hl , it holds that m d∀ ∈  , | [ ] [ ] |t

hl m q m− ≤

| [ ] [ ] |t
hp m q m− and ( [ ] [ ])( [ ] [ ]) 0t t

h hl m q m p m q m− − ≥ . There are two conditions  for t
hl : 

1. If t
hl is on the quadrant intersection planes, i.e., k d∃ ∈ , [ ] [ ] 0t

hl k q k− = , we can get 
m d∀ ∈ , | [ ] [ ] | 2 | [ ] [ ] |t t

h il m q m p m q m− ≤ −  and ( [ ] [ ])( [ ] [ ]) 0t t
h il m q m p m q m− − ≥ . 

2. Otherwise, it holds that: m d∀ ∈ , [ ] [ ] 0t
hl m q m− ≠ . Then, we can infer (1) m d∀ ∈ , 

| [ ] [ ] | 2 | [ ] [ ] |t t
h il m q m p m q m− ≤ −  and ( [ ] [ ])( [ ] [ ]) 0t t

h il m q m p m q m− − ≥ , and (2) k d∃ ∈ ,
| [ ] [ ] | 2 | [ ] [ ] |t t

h il k q k p k q k− < − and ( [ ] [ ])( [ ] [ ]) 0t t
h il k q k p k q k− − > .  

It follows from Definition 4 that t
hl e-dominates t

ip .  
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Proposition 2. Given an ε-hypersquare ( , )t t t
i i iF l u , its true observation t

ip is a reverse skyline 
point, if ∄ t

jp such that t
jp semidominates t

iu and ∄ ( , )t t t
h h hF l u such that t

hl e-dominates t
iu . 

Proof. We prove the proposition using reduction to absurdity. Suppose that t t
iP RSK∉ , then 

t
jp or t

hp semidominates t
ip . If t

jp semidominates t
ip , we have m d∀ ∈  , | [ ] [ ] |t

jp m q m− ≤

2 | [ ] [ ] |t
ip m q m−  and ( [ ] [ ])( [ ] [ ]) 0t t

i jp m q m p m q m− − ≥ , and k d∃ ∈ , | [ ] [ ] | 2 | [ ]t t
j ip k q k p k− <

[ ] |q k− and ( [ ] [ ])( [ ] [ ]) 0t t
i jp k q k p k q k− − > . It holds that m d∀ ∈ , | [ ] [ ] | | [ ]t t

i ip m q m u m− ≤ −  

[ ] |q m and ( [ ] [ ])( [ ] [ ]) 0t t
i ip m q m u m q m− − ≥ . We can infer (1) m d∀ ∈  , | [ ] [ ] |t

jp m q m− ≤

2 | [ ] [ ] |t
iu m q m−  and ( [ ] [ ])( [ ] [ ]) 0t t

j ip m q m u m q m− − ≥ , and (2) k d∃ ∈ , | [ ] [ ] |t
jp k q k− <

2 | [ ] [ ] |t
iu k q k− and ( [ ] [ ])( [ ] [ ]) 0t t

j ip k q k u k q k− − > , that is , t
jp semidominates t

iu . Hence, t
hp

semidominates t
iu  if t

hp semidominates t
ip . Thus, t

hl e-dominates t
iu according to Proposition 1. 

From the above two propositions, we note that, if t
hl does not e-dominate t

iu , t
hp cannot 

semidominate t
ip , that is, t

hp ∉ RSDR( t
ip ). Fig. 3(c) shows three ε-hypersquares and their 

true observations. Consider the ε-hypersquare 1 1 1( , )t t tF l u . Since 3 1| [ ] [ ] | 2 | [ ] [ ] |t tl y q y u y q y− > − , 

3
tl does not e-dominate 1

tu . Similarily, 2
tl  does not e-dominate 1

tu  as 2| [ ] [ ] |tl x q x− >  

12 | [ ] [ ] |tu x q x− . Therefore, the true observation 1
tp is a reverse skyline point (Proposition 2). 

4.2 Identifying Non-Reverse Skyline Points 
Based on RSDR region, it is obvious that a point p cannot be a reverse skyline point, iff there is 
another point o in RSDR(p). That is, o semidominates p. We now extend the identification 
techniques of non-reverse skyline points to ε-hypersquares. Given two ε-hypersquares 

( , )t t t
i i iF l u  and ( , ),t t t

j j jF l u if t
iu falls in RSDR( t

jl ), it is likely that the true observation t
ip is 

located in RSDR( t
jp ). Unfortunately, it is not always the truth. As shown in Fig. 4, although 

1
tu  is in RSDR( 2

tl ), 1
tp  is not inside RSDR( 2

tp ) because 1
tp is located at the corner of the 

hypersquare that RSDR( 2
tp ) belongs to. That is, 1

tp does not gurantee to semidominate 2
tp if 

1
tu semidominates 2

tl . To solve this problem, we define strong semidominance (s-dominance) 
and prove two propositions (Proposition 3 and Proposition 4) that help identify non-reverse 
skyline points from mapped data. 
Definition 5 (Strong semidominance). A point 1p strongly semidominates (s-dominates) 2p
with respect to q, iff 1 2| [ ] [ ] | 2 | [ ] [ ] |p m q m p m q m− < − and 1 2( [ ] [ ])( [ ] [ ] ) 0p m q m p m q m− − ≥  
for all m.  
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Fig. 4. Example of non-reverse skyline point identification 
 

Proposition 3. Point t
ip cannot be a reverse skyline point, if ∃ t

jp such that t
jp semidominates t

ip
or ∃ ( , )t t t

h h hF l u  such that t
hu  s-dominates t

ip . 

Proof. According to Definition 5, since t
hu s-dominates t

ip , then m d∀ ∈ , | [ ]t
hu m −

[ ] | 2 | [ ] [ ] |t
iq m p m q m< − and ( [ ] [ ])( [ ] [ ] ) 0t t

h iu m q m p m q m− − ≥ . Moreover, we have m d∀ ∈ , 
| [ ] [ ] | | [ ] [ ] |t t

h hp m q m u m q m− ≤ − and ( [ ] [ ])( [ ] [ ]) 0t t
h hp m q m u m q m− − ≥ . We can infer m d∀ ∈ ,

| [ ] [ ] | 2 | [ ] [ ] |t t
h ip m q m p m q m− < − and ( [ ] [ ])( [ ] [ ] ) 0t t

h ip m q m p m q m− − ≥ . Since k d∃ ∈ such 
that [ ] [ ]t

hP k q k≠ ,  we have ( [ ] [ ])( [ ] [ ] ) 0t t
h iP k q k p k q k− − > . Hence, t

hp  semidominates t
ip  if 

t
hu  s-dominates t

ip .  

Proposition 4. The true observation of ( , )t t t
i i iF l u cannot be a reverse skyline point, if ∃ t

jp such 

that t
jp semidominates t

il  or ∃ ( , )t t t
h h hF l u  such that t

hu s-dominates t
il .  

Proof. If t
jp semidominates t

il , we can get m d∀ ∈  , | [ ] [ ] | 2 | [ ] [ ] |t t
j ip m q m l m q m− ≤ −  and 

( [ ] [ ])( [ ] [ ]) 0t t
j ip m q m l m q m− − ≥ , and k d∃ ∈ , | [ ] [ ] | 2 | [ ] [ ] |t t

j ip k q k l k q k− < − and ( [ ]t
jp k −  

[ ])( [ ] [ ]) 0t
iq k l k q k− > . It holds that m d∀ ∈  , | [ ] [ ] | | [ ] [ ] |t t

i il m q m p m q m− ≤ − and ( [ ]t
il m −  

[ ])( [ ] [ ]) 0t
iq m p m q m− ≥ .We can infer (1) m d∀ ∈  , | [ ] [ ] | 2 | [ ] [ ] |t t

j ip m q m p m q m− ≤ −  and 

( [ ] [ ])( [ ] [ ]) 0t t
j ip m q m p m q m− − ≥ , and (2) k d∃ ∈ , | [ ] [ ] | 2 | [ ] [ ] |t t

j ip k q k p k q k− < − and ( [ ]t
jp k  

[ ])( [ ] [ ]) 0t
iq k p k q k− − > . That is, t

jp semidominates t
ip . Then, if t

hu s-dominates t
il , we can 

infer t
hp  semidominates t

il  according to Proposition 3, and thus, t
hp  semidominates t

ip .  

In the example of Fig. 4, 1
tu s-dominates 3

tl because 1 3| [ ] [ ] | 2 | [ ] [ ] |t tu m q m l m q m− < − on all 
dimensions. According to Proposition 4, the true observation 1

tp  must semidominate 3
tp . 

Therefore, 3
tp cannot belong to reverse skyline set. 

4.3 Safe Pruning 
In this subsection, we develop new pruning strategies for the reverse skyline queries while 
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returning the correct query answer set.  
Given a point p, let S(P) denote the set of data points that p semidominates. Data set F(p) 

contains points that fully dominates p [21]. Specifically, point p1 fully dominates another p2 
with respect to q if: (1) 1 2| [ ] [ ] | | [ ] [ ] |p m q m p m q m− ≤ − and 1 2( [ ] [ ])( [ ] [ ] ) 0p m q m p m q m− − ≥
for all m, and (2) 1 2| [ ] [ ] | | [ ] [ ] |p k q k p k q k− < − and 1 2( [ ] [ ])( [ ] [ ]) 0p k q k p k q k− − >  for at least 
one k. We denote the region formed by points in F(p) as FDR(p), i.e., the rectangle with p and 
the query point q as diagonal corners but except rectangle corners, as shown in Fig. 5. Let us 
divide region FDR(p) into two regions FDR1(p) and FDR2(p). Specifically, FDR1(p) contains 
data points in F(p)∩S(p). In the work of [21], point p can be pruned only if there are at least 
two points in region FDR(p). We prove one lemma (Lemma 1) to improve the pruning 
efficiency. Note that, point o must semidominate p if o fully dominates p.  

 

O x

q

p

y

FDR2(p)

FDR(p)
FDR1(p)

 
Fig. 5. FDR region 

 
Lemma 1. Point p can be pruned, if there are at least (1) two points in region FDR1(p), or (2) 
one point in region FDR2(p). 
Proof. Point p can be pruned, iff (1) p is a non-reverse skyline point, and (2) any point in S(p) 
is semidominated by another point except p. The first condition is fulfilled because p falls in 
region FDR(p). For any point oϵS(p), points in region FDR(p) semidominate o. Since points in 
FDR1(p) also belong to S(p), it is equivalent to proving that the two points in FDR1(p) 
semidominate each other. This is straightforward because points in FDR1(p) fully dominates p 
and p semidomiates those points. 

We extend Lemma 1 to ε-hypersquares based on the notion of strong fulldominance 
(f-dominance). Given a point t

ip , we say that t
hF ∈FDR( t

ip ) if t
hu  f-dominates t

ip , and t
hF ∈

FDR1( t
ip ) if another condition is fulfilled, i.e., t

ip  semidominates t
hl . It guarantees that the 

true observation t
hp really falls in FDR( t

ip ) or FDR1( t
ip ) (Proposition 5). 

Similarly, given an ε-hypersquare ( , )t t t
i i iF l u , we say that point t

jp ϵFDR( t
iF ) if t

jp fully 

dominates t
il , and t

jp ϵFDR1( t
iF ) if t

iu s-dominates t
jp and t

jp fully dominates t
il . The 

ε-hypersquare ( , )t t t
h h hF l u ϵFDR( t

iF ) if t
hu  f-dominates t

il , and ( , )t t t
h h hF l u ϵFDR1( t

iF ) if 
another condition is fulfilled, i.e., t

iu s-dominates t
hl . 



1942                                 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks 

Definition 6 (Strong fulldominance). A point 1p strongly fulldominates (f-dominates) 2p
with respect to q, if 1 2| [ ] [ ] | | [ ] [ ] |p m q m p m q m− < − and 1 2( [ ] [ ])( [ ] [ ] ) 0p m q m p m q m− − ≥  for 
all m. 
Lemma 2. Given a point t

ip and an ε-hypersquare ( , )t t t
h h hF l u , t

hp fully dominates t
ip if t

hu  
f-dominates t

ip . 

Proof. Since t
hu  f-dominates t

ip , we can get m d∀ ∈  , | [ ] [ ] | | [ ] [ ] |t t
h iu m q m p m q m− < − and

( [ ] [ ])( [ ] [ ] ) 0t t
h iu m q m p m q m− − ≥ . It holds that m d∀ ∈  , | [ ] [ ] | | [ ] [ ]t t

h hp m q m u m q m− ≤ − and 
( [ ] [ ])( [ ] [ ]) 0t t

h hp m q m u m q m− − ≥ . We can infer m d∀ ∈  , | [ ] [ ] | | [ ] [ ] |t t
h ip m q m p m q m− < − , 

and ( [ ] [ ])( [ ] [ ]) 0t t
h ip m q m p m q m− − ≥ . Since k d∃ ∈ , [ ] [ ]t

hp k q k≠ , then ( [ ] [ ])t
hp k q k−

( [ ] [ ] ) 0t
ip k q k− > . Thus, t

hp fully dominates t
ip . 

Proposition 5. A point or an ε-hypersquare can be pruned, if there are at least (1) two 
points/ε-hypersquares in the FDR1 region, or (2) one point/ε-hypersquare in FDR2 region.  
Proof. 1. Given a point t

ip , if ε-hypersquare t
hF ϵFDR( t

ip ), we can get t
hu  f-dominates t

ip . 
According to Lemma 2, we can infer t

hp  fully dominates t
ip . Hence, t

hp ϵFDR( t
ip ). When t

hF
ϵFDR1( t

ip ), we can get t
ip  semidominates t

hl . Therefore, t
ip semidominates t

hp , i.e., t
hp

ϵFDR1( t
ip ).  

2. Given an ε-hypersquare ( , )t t t
o o oF l u , if point pϵFDR( t

oF ), we can get p fully dominates t
ol . 

Clearly, p fully dominates t
op , i.e., pϵFDR( t

op ). When pϵFDR1( t
oF ), we have t

ou s-dominates p. 
We can infer that t

op semidominates p according to Proposition 3. Hence, pϵFDR1( t
op ). 

Furthermore, if another ε-hypersquare t
hF ϵFDR( t

oF ), we can get t
hu  f-dominates t

ol . According 
to Lemma 2, we can infer t

hp  fully dominates t
ol . Hence, t

hp  fully dominates t
op , i.e., t

hp
ϵFDR( t

op ). When t
hF ϵFDR1( t

oF ), we have t
ou s-dominates t

hl . We can infer t
op semidominates

t
hl  according to Proposition 3. Therefore, t

op semidominates t
hp , i.e., t

hp  ϵFDR1( t
op ).  

In conclusion, there are always at least two points in FDR1 region, or one point in FDR2 

region. Hence, point t
ip and ε-hypersquare t

oF can be safely pruned based on Lemma 1. 

Consider the ε-hypersquares in Fig. 6, since 3
tu  f-dominates 1

tl and 1
tu s-dominates 3

tl , we 
can get 3

tF ϵFDR1( 1
tF ). Furthermore, 2

tu f-dominates 1
tl but 1

tu does not s-dominate 2
tl ,  and 

thus, 2
tF  ϵFDR2( 1

tF ). Since there exists an ε-hypersquare in the FDR2 region of 1
tF , 1

tF can be 
immediately discarded according to Proposition 5. 
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Fig. 6. Example of safe pruning 

5. ECRS Algorithm 
In this section we present our query processing algorithm ECRS. We first provide a general 
description in Section 5.1. We then go on to describe in detail the working of three query 
stages from Section 5.2 to Section 5.4.  

5.1 Algorithm Framework 
Initially, the sink collects sensor readings of all nodes and computes the initial reverse skyline 
query results. The sink also broadcasts into the network a user-specified threshold, referred to 
as ε, as the default value of deviation. Note that the sink maintains for each node the latest 
sensor reading that arrives at the sink and is not on quadrant intersection planes as the history 
data point. This sensor reading is also archived at both source node and corresponding 
cluster-head. Therefore, at each sampling epoch, both the sink and head node can get the same 
approximate views of the true observations, and then safely prune unqualified nodes while 
avoiding false-positives. 

Thereafter, ECRS at each subsequent time epochs consists of three stages.  
(1) Mapping information collection: the purpose of this stage is to gather mapped data of 

sensor readings, and then identify sensor nodes that produced the reverse skyline 
points and perform node pruning. 

(2) Probing: the sink asks for sensor readings of “special” nodes (e.g., the identified nodes 
that produced the reverse skyline points), and performs node pruning once again based 
on these new obtained sensor readings.  

(3) Complementing the final results: the sink pulls observations from nodes that have not 
reported their sensor readings and not pruned, and generates the rest reverse skylines.  

Note that, the reverse skyline points can be obtained in all three stages. If a point is 
determined as a reverse skyline point, it can be immediately reported as part of the final results. 
Hence, the query results are returned progressively in our approach.  

5.2 Mapping Information Collection 
During this stage, sensor nodes trigger a propagation of mapping information. Since the 
user-specified threshold ε is set as the default value of deviation, node si reports to cluster head 
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its deviation t
iε only when t

iε ε> and the true observation t
ip is not on quadrant intersection 

planes. For the scenario that t
ip  falls on the quadrant intersection planes, t

ip is directly sent to 
cluster head.  

After receiving the mapping information, cluster-heads compute ε-hypersquares and apply 
Proposition 5 to prune unqualified ε-hypersquares as well as data points. Clearly, sensor nodes 
whose ε-hypersquares are pruned need not report their data point in further processing, and 
thus, they are immediately discarded. We also discard the points or ε-hypersquares with only 
one point/ε-hypersquare in FDR1 region and mark this point/ε-hypersquare as not belonging to 
the reverse skyline query results. We now illustrate the reason. For convenience, we consider 
point p, and let o be a point/ε-hypersquare in FDR1(p). Obviously p and point o (or the true 
observation of ε-hypersquare) semidominate each other and they cannot belong to final results. 
Since points of S(p) are also semidominated by o, those points can be still determined as not 
belonging to revere skyline without p. Hence, p can be safely pruned by marking o. When a 
point is discarded, downlink message is transmitted back to source node to inform it that the 
sensing reading has not arrived at sink and the archived history point need not to be updated. 
The purpose is to maintain the consistency among source node, cluster-head and the sink.  

Then, cluster-heads refine the mapping information for unpruned data points. Especially, for 
each unpruned point t

ip , cluster-head selects the history point s
lp (from the archived history data 

of the cluster) with the minimum value of deviation and in the same quadrant of t
ip , and sends 

the new deviation to the sink. The corresponding node information is also sent to the sink, such 
that the sink can get a correct view of t

iF . 
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Fig. 7. Example of ECRS 
 

Based on obtained mapping information, the sink prunes away unqualified nodes and 
partitions the remaining nodes into three groups: the “reverse skyline” group (or R-node), the 
“non-reverse skyline” group (or N-node), and the group of nodes such that whether these nodes 
belong to the query result is still unknown (or S-node). Consider the example in Fig. 7(a) which 
shows ε-hypersquares of ten sensor nodes (s1 to s10) and one point 11

tp  of node s11. The 
threshold ε is set to 1. Node s7 is a R-node, since no point semidominats 7

tu and there is no 
ε-hypersquare whose nearest corner e-dominates 7

tu ( according to Proposition 2).  The N-node 
set is {s2, s3, s4, s5, s6 , s8 , s11} according to Proposition 3 and Proposition 4. The ε-hypersquares 
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{ 3
tF , 4

tF , 5
tF , 6

tF , 8
tF }and point 11

tp can be immediately discarded, since they have 7
tF located in 

their FDR2 region (according to Proposition 5). The rest nodes {s1 s9, s10} are S-nodes because 
we cannot  determined whether they belong to the query results. 

5.3 Probing 
In the probing stage, the sink requires the sensor readings of all R-nodes, as these sensor 
readings belong to the reverse skyline set. The sink also asks some special S-nodes to report 
their true observations. These special S-nodes are part of S-nodes such that we can not 
determine whether they belong to the query results if we know the sensor readings of all other 
nodes. Thus, these nodes must report their true observations. Specifically, in order to identify 
special S-nodes, we make the following observation:  
Observation 1. Given an S-node is , represented by ε-hypersquare ( , )t t t

i i iF l u , is  must report its 
sensor reading if t

il is not semidominated by t
hl of any other ( , )t t t

h h hF l u .  

The reason is straightforward. If the true observation t
ip is a reverse skyline point, is should 

definitely send its observation. On the contrary, if t
ip is not a reverse skyline point, we need to 

identify this “status” by using Proposition 4. Since is is an S-node, only when the true 
observation t

hp  semidominates t
il , we can determine t

ip is not a reverse skyline point without 
having to retrieve the true values of t

ip . Clearly, t
hl semidominates t

il if t
hp  semidominates t

il . 
Hence, in order to determine whether or not t

ip is a reverse skyline points, we must retrieve its 
true values.  

The “probing” message containing the ids of “probing” nodes are then sent by the sink to 
corresponding cluster-heads, which thereafter retrieve observations from corresponding nodes. 
The cluster-heads perform node pruning based on received sensor readings and archived 
ε-hypersquares, which is similar with the processing in the first stage. Then, cluster-heads send 
unpruned sensor readings to the sink, which thereafter prune away unqualified nodes and 
identify sensor nodes that belong to the query result as in the first stage. 

In Fig. 7(a), 1s is a “special” S-node that needs to send its true observation, because the 
nearest corner cannot be semidominated by that of any other ε-hypersquare (according to 
Observation 1). Therefore, in the probing stage, the sink asks for values from node 1s and the 
R-node 7s . Fig. 7(b) shows updated mapping information. Since 7

tp falls in FDR2 region of 

9
tF , 9s is an N-node and 9

tF can be pruned. It is obvious that node 1s is a reverse skyline node. 
After the probing stage, 10s is still an S-node.  

5.4 Complementing the Final Results 
In the last stage, the sink requires sensor readings of all unpruned nodes and generates the rest 
reverse skyline points. Node pruning is performed at each cluster-head. Based on received 
sensor readings, the sink can correctly compute the rest reverse skyline points. Note that the 
reverse skyline result includes the reverse skyline points retrieved in all three stages. Since 
some sensor readings arrive at the sink, the sink updates the history data of corresponding 
nodes. The same updating operation is performed at cluster-heads and source nodes. Lemma 3 
verifies the correctness of ECRS’s algorithm. 

As shown in Fig. 7(c), the sink asks for true values of unpruned ε-hypersquares { 2
tF , 10

tF }. 
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Point 10
tp is reported as a reverse skyline point, and 2

tp does not belong to the reverse skylines 
since it is semidominated by 1

tp , 7
tp and 10

tp  .  
Lemma 3. At any epoch t≥tfirst, ECRS produces a correct reverse skyline result where tfirst is 
the first sampling epoch. 
Proof. The proof is obvious since the algorithm at the first sampling epoch is essentially a 
centralized processing, and the correctness at subsequent epochs is guaranteed by Propositions 
1 to 5.  

6. Performance Evaluation 
In this section, we conduct a simulation-based performance of our proposed algorithm that is 
implemented in C++. All experiments were conducted on a PC equipped with a 3GHz Dual 
Core AMD processor equipped with 2GB RAM.  

6.1 Experimental Setup 

We assume that n sensor nodes are evenly deployed in √𝑛 × √𝑛 units with the sink located at 
the center. The communication radius is 2√𝑛 units. We employ HEED [27] as the underlying 
cluster-based network architecture. We deploy three different datasets: uniform, correalted  and 
clustered [21,28]. We first generate the initial datasets that follow the above distributions 
respectively. For uniform and correlated datasets, we then randomly select data point from the 
initial dataset for each sensor node. For the clustered dataset, each cluster-head picks randomly 
a point and generate 4 centroids that follow a Gaussian distribution on each axis with variance 
0.025, and a mean equal to the corresponding coordinate of the centroid. Then, all associated 
nodes obtain points, the coordinates of which follow a Gaussian distribution on each axis with 
variance 0.005 around the cluster centroids. Values of data points on each dimension are 
normalized between 0 and 1. Data points at each node si is then modeled as 1[ ] [ ]t t

i i i ip l p l eλ −= +  , 
where ~ (0,0.1)ie N and ~ (1,0.01).i Nλ Every node is initialized with 1iλ = and 0ie = . Assume 
that each d-dimensional point holds 4 d× bytes, and both a deviation and a node identifier take 
4 bytes each.  
 

Table 1. Experimental parameters and values 
Parameter Values 
Dimensions 2, 3, 4,5 

Number of nodes  6000, 7000, 8000, 9000 

ε 
0.006, 0.008, 0.01, 0.02, 0.03, 0.04 (uniform dataset) 
0.002, 0.004, 0.005, 0.01, 0.015, 0.02 (clustered and 

correlated datasets) 
 
Our main metrics are: (i) the node reduction rate (NRR): the proportion of non-reverse 

skyline nodes that do not send their sensor readings to the number of non-reverse skyline nodes, 
and (ii) the communication cost, which counts the number of bytes of messages transmitted 
during query processing. We compare our ECRS approach with Basic and Mapping approach. 
The Basic approach is a continuous version of algorithm of [21], where at each sampling 
epoch all nodes report their sensor readings and in-network processing based on the notion of 
full skyline is utilized to reduce the amount of transferred data. The Mapping approach is 
almost the same to our proposed ECRS method, except that it extends the pruning technique of 
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[21] to mapped data, that is, data points or ε-hypersquares are pruned only when there are at 
least two points/ε-hypersquares in the FDR regions. The parameters of the experiments are 
listed in Table 1. Unless stated explicitly, the default parameter values, given in bold are used. 

6.2 Experimental Results 
Node Reduction Rate. We first study the efficiency of node pruning technique in terms of the 
node reduction rate. We set threshold ε to the value that optimizes the overall performance 
(through a tuning processing similar to Fig. 13). Specifically, we set ε to 0.01 for the uniform 
dataset, and ε to 0.005 for the clustered and correlated datasets.  

In order to examine the impact of the dimensionality, we used sensor networks with 8000 
nodes with dimensionality varying from 2 to 5. Fig. 8(a) plots the experiment results for 
uniform and clustered datasets. We can see that the performance degrades when dimensionality 
increases. The charts also show that, the NRR in clustered dataset is 25% to 53% higher than 
uniform dataset. The reason is that, data points in clustered dataset concentrate in several 
regions, and thus, more sensor nodes are pruned due to mapped data close to query point. To 
study the influence of the node cardinality, we used a 4-dimensional dataset and varied the 
network size between 6000 and 9000 nodes. As shown in Fig. 8(b), ECRS in clustered dataset 
prune about 50% more nodes than uniform dataset. We also see that, the NRR is not much 
sensitive to the cardinality under both distributions. 

          
Fig. 8. Data reduction rate (uniform and clustered datasets) 

 
Fig. 9. Data reduction rate of ECRS and Mapping approaches 
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In Fig. 9, we compare ECRS with Mapping method for clustered dataset. We can see that 
ECRS is 15% to 28% more efficient than Mapping. The experiments results indicates that our 
pruning strategy can efficiently reduce the number of nodes that need to report their sensor 
readings. 
Communication Cost. We then proceed to investigate the communication cost. We evaluate 
the performance of ECRS under three data distributions, i.e., uniform (Fig. 10), clustered (Fig. 
11), and correlated (Fig. 12).  

Fig.10(a) depicts the communication cost when the dimensionality varies from 2 to 5. We fix 
the node cardinality to 8000. ECRS transfers more than 45%~130% fewer data than Basic due 
to our node pruning technique employed by ECRS, which greatly reduces the number of nodes 
that need to report their readings (as shown in Fig. 8). We also see that, as the dimensionality 
increases, the communication cost grows rapidly. There are two reasons. Firstly, an increase of 
dimensionality leads to the increase of the size of the individual sensor readings as well as the 
cardinality of the reverse skylines. Secondly, the pruning capability degrades when 
dimensionality grows.  

Fig. 10(b) illustrates the communication cost as a function of the number of sensor nodes for 
the 4-dimensional dataset. ECRS transfers about 89% fewer data than Basic and 23% than 
Mapping. Since a network of a larger size generates more data, the number of reverse skylines 
as well as the average cost of processing such a query increases. Hence, both approaches 
transmit more bytes of data when the number of nodes increases. 

 

 
      

Fig. 10. Communication cost (uniform dataset) 
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Fig. 11. Communication cost (clustered dataset) 

 
Fig. 11 shows the communication cost of clustered dataset. ECRS shows consistently better 

performance than Basic. For the 3-dimensional dataset, the communication cost is an order of 
magnitude less than that of Basic. We also see that, ECRS outperforms Basic more significantly 
as dimensionality increases. Although communication costs of both algorithm increase with 
dimenisionality, the cost incresement of Basic is much more obvious than that of ECRS. 

From Fig. 10 and Fig. 11, we can see that, the communication cost of uniform dataset is 
higher than that of clustered dataset. The reason is that, more unqualified nodes are pruned for 
clustered dataset, and therefore fewer sensor readings are transferred. The charts also show 
that the cost of ECRS is always lower than that of Mapping, which proves the effectiveness of 
our pruning strategy. 

 

 
Fig. 12. Communication cost (correlated dataset) 

 
In ECRS, three types of data are transmitted over the network, i.e., sensor readings, 

deviations, and the probing message. Specifically, both sensor readings and deviations are 
associated with node ids. The probing message contains the ids of the nodes that need to report 
their sensor readings. In order to clearly illustrate the effect of transferring these three types of 
data, we provide a cost break-down analysis. In Fig. 12, we depict the classified 
communication cost in correlated dataset. The chart shows that cost for transferring sensor 
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readings is the dominator of the overall communication cost (59%~87%). Specifically, as 
dimensionality increases, the proportion of cost for transferring sensor readings increases (from 
59% to 87%, as shown in Fig. 12(a)). As the cardinality of the reverse skyline increases with 
dimensionality while the pruning capability degrades, the cost for transferring 
multi-dimensional sensor readings grows rapidly with dimensionality. Furthermore, in ECRS, a 
sensor node needs to report its true deviation only when the one-dimensional deviation is larger 
than the default value ε. Therefore, the effect of additional cost on the overall communication 
cost decreases. We only detail the results on correlated dataset here, because ECRS yields 
similar performances on the other two datasets. From Fig. 10 to Fig. 12, we can see that, 
although additional communication cost is needed for collecting deviations and sending the 
probing message in ECRS, the overall cost decreases as a result of the significant reduction of 
the number of transferred sensor readings. 
Effects of the parameter. In the last experiment, we evaluate the performance of ECRS under 
different values of threshold ε. In ECRS, ε is set as the default value of deviation, and a sensor 
node reports its deviation as mapping information only when its deviation is larger than ε. Fig. 
13(a) evaluate the communication cost of ECRS in uniformly distributed dataset when we vary 
ε from 0.006 to 0.04. We used a 4-dimensional dataset with 8000 points. When ε is relatively 
small, e.g., ε< 0.01, the performance degrades if ε decreases. A smaller ε does not necessarily 
ensure a better performance. The reason is that when ε goes smaller, unqualified nodes need to 
report their true deviations for mapping information collection. While ε>0.02, the 
communication cost increases when ε goes larger. This is because, a larger ε leads sensor nodes 
to be represented with ε-hypersquares with greater volumes, and thus, more unqualified nodes 
are not pruned based on their mapping information. Fig. 13(b) shows the effect of ε on the 
communication cost when data distribution is clustered. When ε is close to 0.005, the 
communication cost is under 5 million and ECRS has relatively good performance. The 
correlated distribution exhibit similar behavior, and hence, are omitted here. 
 

 
Fig. 13. Quality vs. threshold 

 
Summary. From the experiments, we can conclude that for continuous reverse skyline, our 
proposed ECRS approach can efficiently reduce the number of nodes that need to send their 
sensor readings. ECRS consistently outperforms the  the coutinuous version of algorithm of [21] 
in terms of communication cost under various network configurations, and the superiority is 
more significant as the dimension increases. 
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7. Conclusion 
In this paper, we have proposed ECRS, an energy-efficient approach that processed the 
continuous reverse skyline queries in wireless sensor networks. The basic idea is to suppress 
the updates from nodes not contributing to the reverse skyline result. A data mapping scheme 
is used to estimate current sensor readings, and identify nodes that produced reverse skylines. 
Node pruning techniques are proposed to remove unqualified nodes while guaranteeing the 
correctness of the answer. Our simulation revealed the effectiveness and superior efficiency of 
the ECRS. Some extensions can be considered. An interesting topic is to examine the 
effectiveness of node pruning technique in other query operators, such as k nearest neighbor 
query and range query. Furthermore, it is equally exciting to study secure reverse skyline 
query and the reverse skyline queries in various subspaces. 
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