• 제목/요약/키워드: continuous flow-through system

검색결과 139건 처리시간 0.024초

Design and Implementation of Healthcare System for Chronic Disease Management

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권3호
    • /
    • pp.88-97
    • /
    • 2018
  • Chronic diseases management can be effectively achieved through early detection, continuous treatment, observation, and self-management, rather than a radar approach where patients are treated only when they visit a medical facility. However, previous studies have not been able to provide integrated chronic disease management services by considering generalized services such as hypertension and diabetes management, and difficult to expand and link to other services using only specific sensors or services. This paper proposes clinical rule flow model based on medical data analysis to provide personalized care for chronic disease management. Also, we implemented that as Rule-based Smart Healthcare System (RSHS). The proposed system executes chronic diseases management rules, manages events and delivers individualized knowledge information by user's request. The proposed system can be expanded into a variety of applications such as diet and exercise service in the future.

수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로- (Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin -)

  • 김경훈;권헌각;안정민;김상훈;임태효;신동석;정강영
    • 한국환경과학회지
    • /
    • 제26권8호
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.

Flow Truss Dome 구조물의 비대칭 하중모드에 따른 불안정 현상에 관한 연구 (A Study of Unstable Phenomenon of Flow Truss Dome Structure with Asymmetric Load Modes)

  • 손수덕;김승덕;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권4호
    • /
    • pp.61-76
    • /
    • 2002
  • The structure system that is discreterized by continuous shells is usually used to make a large space structures and these structures show the collapse mechanisms that are captured at over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. Moreover, resist force of structure can be reduced by initial condition and initial imperfection significantly. In order to investigate the instability of shell structures, the finite deformation theory can be applied and it becomes a nonlinear mathematics in which use equation of tangential stiffness incrementally. With an initial imperfection, using simple example and Flow Truss Dome, the buckling characteristics of space truss is main purpose of this paper, and unstable behavior is studied by proposed the numerical method. Also, by using MIDAS, this research work analyzes displacements and inner forces as the design load of model, and the ratio of buckling load of design load is investigated.

  • PDF

$TiO_2$ 광촉매반응을 이용한 수중의 은이온 제거에 관한 연구 (A Study on the Removal of Ag(I) in Water Using $TiO_2$ Photocatalysis)

  • 김현용;조일형;양원호;김민호;이홍근
    • 환경위생공학
    • /
    • 제15권2호
    • /
    • pp.58-64
    • /
    • 2000
  • The photocatalytic removal of Ag(I) in water by $TiO_2$ at a various conditions, which are initial Ag(I) concentration, circulation flow rate, $TiO_2$ dosage and methanol concentration, was studied. A continuous flow system with a circular type reactor of the TiO2 suspensions with UV light through an photoreactor column was applied. The major results of this study were as follows; 1. First order kinetics was observed from the result at different initial concentration of Ag(I). As the initial Ag(I) concentration was incereased, the reaction rate was decreased. 2. The removal efficiency of Ag(I) increased with increasing the circulation flow rate and $TiO_2$ dosage. However, over $4{\ell}/min$ of circulation flow rate and $1.5g/{\ell}$ of $TiO_2$ dosage, increasing of the efficiency reached a plateau. 3. The addition of methanol as hole scavenger enhanced the removal efficiency of Ag(I) but the removal efficiency reached a plateau over some level of methanol. 4. It was found that $TiO_2$ photocatalysis was effective method to remove of Ag(I) from aqueous solution.

  • PDF

펄스동전기법과 연속처리동전기법을 이용한 점토성-사질토의 탈수화 효율 비교 (Comparison of Improving Dewatering Process at Clay-Sandy Soil based on Pulse-Electrokinetic Technology and Continuous-Electrokinetic Technology)

  • 신상희
    • 한국지반환경공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.37-41
    • /
    • 2014
  • 펄스동전기법은 점토성-사질토에서 탈수화 공정을 효율적으로 진행하기 위해 제안되었다. 제안된 동전기법은 점토성-사질토에서 토양 안정성의 증진을 위해 전류 흐름에 따르는 유체의 이동에 의한 탈수화 공정을 진행하는 것이다. 제안된 동전기법의 성능을 확인하기 위해 제작된 샘플은 총 7일간에 점진적으로 압력을 증가시켜 30 psi($2.11kgf/cm^2$)의 최종압력으로 압축과정을 거쳐 완성되었다. 기존의 연속적인 처리와 펄스방식으로 처리하는 공정을 비교하여 각각의 특성을 관찰하였다. 각각의 테스트는 48시간 동안 3 V/cm의 전압 경사 조건으로 연속적인 처리공정과 48시간 동안 총 8시간씩 3회에 걸쳐 전기를 차단하는 펄스방식으로 진행하였다. 그 결과, 펄스방식의 효율이 연속처리방식의 효율과 비슷한 것으로 나타났고 펄스방식이 연속처리방식보다 전력소비가 약 50 % 감소로 그 경제성을 입증하였다.

Analysis of the Aluminum Extrusion Process Equipped with the Continuous Heat Treatment System

  • Lee, Bong-Sang;Cho, Young-Hee;Lee, Jeong-Min;Lim, Hak-Jin;Koo, Jar-Myung;Yoon, Bo-Hee;Lee, Tae-Hyuk;Lee, Jong-Hyeon
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.39-45
    • /
    • 2011
  • In this study, the heat flow of the plant scale aluminum extrusion process was investigated to establish optimum continuous heat treatment conditions. During the extrusion of 6061 aluminum alloy, processing parameters such as the extrusion pressure, speed and temperature histories of billets were logged as a function of time. The surface temperature of the billets increased at constant ram speed, while it decreased with decreases of the ram speed. In order to maintain the billet temperature within a solutionizing temperature range prior to the succeeding water quenching step, the ram speed or the temperature of the blower should be controlled. The temperature histories of the billets during the extrusion and hot air blowing processes were successfully simulated by using the velocity boundary model in ANSYS CFX. The methodology to design an optimum process by using a commercial simulation program is described in this study on the basis of the metallurgical validation results of the microstructural observation of the extrudates. The developed model allowed the advantages of taking into account the motion of the extrudate coupled with the temperature change based on empirical data. Calculations were made for the extrudate passing through the isothermal chamber maintained at appropriate temperature. It was confirmed that the continuous heat treatment system is beneficial to the productivity enhancement of the commercial aluminum extrusion industry.

그래뉼 타입 활성탄 필터의 100 나노 미만 다분산 초미세먼지 표면흡착 제거 효율 연구 (Filtration Efficiency of Granular Activated Carbons to Polydisperse Ultrafine Particles through the Surface Adsoprtion)

  • 조경일;강기원;신지윤;김창혁
    • 한국입자에어로졸학회지
    • /
    • 제18권3호
    • /
    • pp.79-86
    • /
    • 2022
  • Many commercial air purifiers currently have deployed granular activated carbon (GAC) filters for removing volatile organic compounds in the indoor air. GACs are generally used to remove gaseous contaminants in the air through adsorption by the inner surfaces of pores. In addition, airborne particles can be also filtered by the surface adsorption of the GACs, which can improve the life-time of the particulate filters. In this study, the filtration efficiency of GACs to ultrafine particles through surface adsorption was investigated at different volume flow rates by deploying a continuous particle filtration system. The polydisperse sodium chloride (NaCl) particles were generated by a set of an atomizer and a diffusion dryer, and then mixed with particle-free air at different volume flow rates. The penetration of ultrafine particles and pressure drop for each experimental condition were measured to figure out the effect of the volume flow rate on the surface adsoprtion of the GACs to particles, ~ 2 mm. The particle filtration efficiency of the GACs decreased as the volume flow rate increased from 4 to 14 lpm. However, the 5 times thicker GAC filter layer decreased the penetration of ultraparticles than a preious study. The filtration efficiency of the single granule was also higher than the previous result in the literature with smaller granule filter materials.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • 제37권2호
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.

마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조 (Fabrication of Polymeric Microcapsules in a Microchannel using Formation of Double Emulsion)

  • 남진오;최창형;김종민;강성민;이창수
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.597-601
    • /
    • 2013
  • 본 연구는 액적기반 미세유체 장치를 이용하여 단분산성 마이크로캡슐의 간단한 제조방법에 관한 것이다. 본 연구에서 제시한 제조 방법은 이중액적을 생성시키기 위해 기존의 복잡한 표면처리가 필요한 이중 유화과정을 대신하여 하나의 교차점을 가진 단일공정을 사용하고자 한다. 먼저, 분산상은 광중합이 가능한 ethoxylated trimethylolpropane triacrylate (ETPTA) 단량체와 fluorocarbon (FC-77) 오일을 사용하고 연속상은 poly(vinyl alcohol) (PVA) 수용액을 사용하였으며, 미세유체 채널 내부로 흘려 주면 하나의 교차점에 흐름이 집중되어 균일한 이중액적을 생성한다. 생성된 이중액적은 광중합을 통해 마이크로캡슐을 제조한다. 상기 방법은 ETPTA 유체의 부피유속을 조절하여 이중액적의 껍질두께 제어가 가능하고 연속상인 물의 부피유속을 조절하여 전체 직경을 제어할 수 있다. 더 나아가, 본 시스템을 사용하여 다양한 물질들을 함입한 마이크로캡슐을 제작할 수 있으며, 약물전달시스템의 응용 기술에 활용될 것으로 예측된다.