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Abstract

This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance 

on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated 

as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists 

of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. 

Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to 

overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the 

INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced 

altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, 

through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall 

integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated 

through a simulation study, with an aircraft flight trajectory scenario.
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1. Introduction

One of the most essential technologies for operating 

unmanned vehicles is to compute navigation information, 

including the position, velocity, and attitude of a vehicle. 

A number of autonomous vehicles have been developed, 

such as a guided weapon system, UGV (Unmanned Ground 

Vehicle), USV (Unmanned Surface Vehicle), and UAV 

(Unmanned Aerial Vehicle), for surveillance, reconnaissance, 

and many other dangerous and difficult missions. For 

autonomously operating these unmanned vehicles, many 

navigation sensors and systems are used, for example IMU 

(Inertial Measurement Unit), GNSS (Global Navigation 

Satellite System), vision sensor, LiDAR (Light Detection and 

Ranging), magnetometer, barometer, etc. Among these, GNSS 

is an essential system, which can provide accurate absolute 

position information of a vehicle within certain error bounds, 

as well as velocity and time information. In particular, the 

GPS/INS integrated system, which can provide a drift-free 

and accurate solution of a highly dynamic vehicle, by using 

GPS (Global Positioning System) satellite signals to correct 

the solution from an Inertial Navigation System (INS), has 

been widely used on ground and aerial vehicles, for precise 

navigation purposes. 

However, the performance of the GNSS-based navigation 

system is likely to be affected by satellite observation 

environments, since the system cannot provide the navigation 

solution in poor environments. For example, when a vehicle is 

downtown or in cloud forests, the number of visible satellites 

decreases drastically, and multipath error is very likely to 

occur. Furthermore, under indoor or jamming environments, 

the satellite navigation system cannot be used. To overcome 

the unavailability problem of GNSS, various researches have 

been studied. Among those, research on the integration of IMU 

and vision sensor is notable [1-3]. The research is generally 

based on SLAM (Simultaneous Localization and Mapping) 
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technologies. The most representative way is to use feature 

points, which are easily distinguishable from other pixel 

points of the captured image [4-9]. The navigation solution 

of the feature point-based SLAM system has generally a 

diverging property, since the navigation algorithm inherently 

relies on the accuracy of both the feature point position 

estimates, and vehicle estimates, which tend to deteriorate, 

due to mutual error accumulations. Also, it is difficult to 

detect and track high-quality feature points in unstructured 

environments where no previously known landmark exists. 

Meanwhile, an optical flow that represents the motion 

of pixels was also utilized in vision-aided navigation 

systems [10, 11, 13-14]. In [11], optical flow vectors were 

used for road navigation, to estimate the forward velocity 

and heading angle of a car, and detect moving cars on the 

road. Additionally, it was applied to the autonomous flight 

control of a MAV (Micro Air Vehicle) in indoor corridor 

environments, and autonomous take-off and landing of a 

small-scale UAV [13, 14]. However, it is rarely reported that 

optical flow is directly adopted for estimating 6 DoF (Degree 

of Freedom) navigation solutions. 

In a different approach from vision-based navigation 

systems, the LiDAR-based navigation system has been 

independently developed to deal with GNSS-denied 

environments. As a result, a localization and mapping system 

for mobile robots and multi-rotors has been developed. In 

[15], scan matching based two-dimensional SLAM and INS 

are loosely integrated, based on an EKF (extended Kalman 

filter) framework, and the developed system is applied to 

UAV, USV and small handheld embedded systems. However, 

the designed system considers two-dimensional motion 

only in the limited environment where specific obstacles 

are within the range of LiDAR. Thus, it cannot be applied in 

unstructured outdoor environments, such as open terrain.

In a few works, research on SLAM combining both vision 

and LiDAR sensor were investigated. For instance, IR scanner, 

vision sensors and encoders were simultaneously integrated, 

based on a particle filter framework for mobile robot 

localization, with the assumption of previously known map 

information. Besides, research on detecting moving cars and 

pedestrians, and research on indoor path planning of UAV 

were developed, by combining computer vision processing 

results with LiDAR measurements [16-18]. Nevertheless, 

these efforts put most emphasis on detecting and localizing 

possible obstacles via heterogeneous sensor fusion, and 

thus suffered from generating extensive status information 

of the host vehicles. Consequently, a literature survey reveals 

that no published result presents direct integration of vision 

sensor and LiDAR within an INS mechanization scheme, 

for a complete navigation solution for unstructured outdoor 

environments.

 In this paper, we present a Vision/LiDAR aided integrated 

navigation system, for an environment where 1) GNSS 

signals cannot be used; 2) the altitude of the ground surface 

is varying; and 3) there is no known map information. 

The presented system consists of a mid grade strapdown 

IMU and a vision/LiDAR system, on a gimbaled platform, 

onboard the vehicle. The system turns out to provide a 

reliable navigation solution, by suppressing divergence 

of the INS error, with the help of vision sensor and LiDAR 

measurements. In detail, the horizontal velocity error is 

obtained by correcting the velocity estimate of INS, with that 

derived from optical flow measurements. In particular, a 

new piecewise continuous slope model is introduced for the 

ground, in calculating altitude increment of the proposed 

measurement model. Basically, range error is obtained by 

combining the INS solution and attitude compensated range 

information from LiDAR. In parallel, the height of the ground 

surface is estimated, which relates to the geometric relation 

between two boundary LiDAR measurements. Then, the 

combined error, including range error and ground altitude 

variation, serves as the true measurement of the vehicle’s 

altitude change. Finally, the overall integrated navigation 

system is implemented, based on EKF framework, supported 

by a simulation study to verify the feasibility of the proposed 

system.

The rest of the paper is organized as follows: Section 2 

describes the concept of the proposed integrated navigation 

and its coordinate system. In Section 3, the INS error model 

and sensor model are presented, for constructing the 

integrated navigation filter. After that, Section 4 provides 

simulation results, to verify its feasibility in GNSS-denied 

environments. Finally, Section 5 concludes the paper, with a 

discussion of our current research.

2. System Illustration

The proposed integrated navigation system considers its 

operation onboard a UAV, flying over flat or sloped ground, 

under GNSS-denied environments. To illustrate the working 

principle and basic architecture of the proposed system, 

the sensor integration concept and the adapted coordinate 

system for the low or mid grade IMU (inertial measurement 

unit), vision sensor, and LiDAR are presented in this section.

2.1 Concept of the Proposed System

The concept of the proposed integrated navigation 

system is described in Fig. 1. The system provides a relative 
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navigation solution, with the aid of the vision sensor and 

LiDAR measurements, when the GNSS signal cannot 

be used. The IMU operating at a high rate is mounted 

on the vehicle body, which results in a strapdown INS 

mechanization. The vision sensor and LiDAR operating at 

a lower rate than the IMU are mounted on a stabilized two-

dimensional gimbal system; thus these sensors can keep 

their sensing axis perpendicular to the local navigation 

frame, regardless of the vehicle’s roll/pitch motion. 

Although the GNSS/INS integrated system guarantees a 

tolerable navigation accuracy in normal conditions, the 

performance abruptly degrades, as GNSS signal outage 

occurs. In this background, it is attempted to suppress 

the rapid divergence of the navigation solution, by 

compensating INS errors, through the measurements from 

the vision sensor and LiDAR. 

Optical flow vectors representing the motion of pixels are 

calculated, using consecutive image frames. If it is assumed 

that the rotational motion of the vehicle is sufficiently 

negligible, compared with the longitudinal or lateral motion, 

the optical flow effectively represents the translational 

motion of the vehicle, because the motion of the vision 

sensor is not affected by the roll/pitch motion. Therefore, 

by associating the flow vector with the camera model for 

coordinate transformation, the horizontal translational 

velocity can be computed. At the same time, the altitude 

variation of the ground surface can be calculated, using 

two range measurements (forward and backward range 

signal) from the LiDAR, which can be further used to obtain 

the vehicle’s accurate altitude change on a general sloped 

ground.

2.2 Sensor Coordinate Systems

The sensor coordinate system of the three sensors for 

constructing the presented navigation system is shown in 

Fig. 2. 

The coordinate system of the IMU is equal to the body 

frame of the vehicles. The vision sensor and LiDAR are 

mounted on the two-dimensional gimbal system, which 

is referenced to the gimbal coordinate system, and aligned 

with the local navigation frame (NED frame), except for the 

down axis. In the figure below, the subscript b denotes the 

body-fixed coordinate system, and the subscript g denotes 

the gimbal coordinate system. Images from the vision sensor 

are on the Xg-Yg plane, and the LiDAR provides detection 

ranges and scan angles on the Xg-Zg scan plane, whose 

zero degrees scan angle is equal to the Zg axis. Then, the 

relationship between body-fixed coordinate and gimbal 

coordinate system can be simply expressed, using the well-

known direction cosine matrix, containing only roll (

6 
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where, 

xOF , yOF : Optical flow measurements [pixel] 

 xV , yV : Translational velocity w.r.t. the body frame [m/s] 

t : Interval time [s] 

H : Ground height [m] 

FL : Camera focal length [m] 
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Then, the translational velocity in the NED frame is represented by the following equation: 

   
   

cos sin
sin cos

x D D N

y D D E

V V
V V

 
 

    
           , 

where, D  is the heading angle [rad] of the aircraft. In the case that a moderate maneuvering 

dynamics of the aircraft is considered, the noise model of the optical flow can be assumed as an 

additive white Gaussian form. 
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The slope angle   can be calculated as shown in (6). In the case of surface type ②, the slope 

angle means the angle of the virtual flat sloping surface line connecting two cross points, where the 

forward/backward measurements and the curved ground surface intersect one another. 
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zero degrees represents the vertical distance to the ground 

surface, since the LiDAR always looks downward, as well 

as the vision sensor. If the height of the ground surface is 

not varying, the vertical distance can be simply used as an 

altitude measurement. But if it is varying, the height of the 

ground surface should be computed, through a geometric 

condition. Fig. 3 describes the geometrical relations between 

the LiDAR measurements and the ground surface.

When it is assumed that the shape of the ground surface 

is smooth, the type of ground surface is categorized into ① 

flat surface, ② curved sloping surface, and ③ flat sloping 

surface. In the above figure, by using forward range lfw with 

a scanning angle of α degrees, and backward range lbk with 

a scanning angle of -α degrees, the angle β between the 

backward range and the sloping surface can be obtained as 

shown in (5).
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In the above figure, Hs represents the distance between LiDAR and the virtual surface, and Hm 

represents the height of the virtual surface. Height variation of the virtual ground surface (Hs) can be 
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Finally, the height variation of the vehicle is computed as 

  s mH H H     .                                                           (8) 

 
3.3 Integrated Navigation Filter 

There are various filtering methods, such as the EKF, UKF (unscented Kalman filter), CKF 

(cubature Kalman filter), and PF (particle filter) for nonlinear system application. In many cases, the 

EKF approach for the nonlinear estimation problem provides a strong cost-effective result, in 

comparison with other nonlinear estimation methods. Thus in this paper, considering aspects of 

algorithm complexity, estimation performance, and onboard hardware implementation, the integrated 

navigation filter is constructed based on the EKF framework, using the INS error model and sensor 

measurement models in the previous sections. In this scheme, the linearized system and observation 

model around the last state estimates are used for each time update, and measurement update 

computation. Fig. 4 briefly summarizes the formulations of the EKF. 
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where, b
nC : Transformation matrix from the navigation frame to body frame. In the above models, all 

process and measurement noises are modeled as zero-mean white gaussian noises. 

Fig. 4 represents the structure of the proposed integrated navigation filter. An indirect feedback 

structure is adopted, to compensate estimated error. In this filter structure, the integrated navigation 

solution is estimated by compensating the estimated INS error, using the measurement vectors from 

optical flow and LiDAR.    
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The ground surface has a slope angle of 5 degrees, after 150 meters in an easterly direction, and -7 

degrees between -100 meters and 80 meters in an easterly direction, at the end of the trajectory of the 

vehicle, as shown in Fig. 5. When generating height distribution, the horizontal position resolution is 

set to 0.1 meters. 

 
Fig. 5. Height distribution of ground surface, and reference flight trajectory 

 

13 

an INS-only system, when GNSS signal outage occurs. 

 

4.1 Simulation Environments 

The navigation scenario is that a fixed-wing UAV first makes a level flight with GNSS/INS 

navigation mode, and then the navigation mode is changed to an integrated navigation system, as soon 

as GNSS signal outage occurs, at 10 seconds from the beginning. After that, the vehicle navigates 

with integrated navigation mode to the end. In this process, it is assumed that detecting whether 

GNSS signal can be used or not, and switching navigation node, are accomplished by another 

algorithm. The detailed flight profile is shown in Table 1. 

Table 1. Flight profile 
Order Profile 

1 level flight 
2 ascending flight (pitch angle: 10 degree) 
3 bank turn (roll angle: 15 degree) 
4 descending flight (pitch angle: -10 degree) 
5 level flight 

 

The ground surface has a slope angle of 5 degrees, after 150 meters in an easterly direction, and -7 

degrees between -100 meters and 80 meters in an easterly direction, at the end of the trajectory of the 

vehicle, as shown in Fig. 5. When generating height distribution, the horizontal position resolution is 

set to 0.1 meters. 

 
Fig. 5. Height distribution of ground surface, and reference flight trajectory 

 

Fig. 6. Height distribution of ground surface, and reference flight trajectory



375

Sukchang Yun    Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description...

http://ijass.org

system, with that of an INS-only system, when GNSS signal 

outage occurs.

4.1 Simulation Environments

The navigation scenario is that a fixed-wing UAV first 

makes a level flight with GNSS/INS navigation mode, 

and then the navigation mode is changed to an integrated 

navigation system, as soon as GNSS signal outage occurs, 

at 10 seconds from the beginning. After that, the vehicle 

navigates with integrated navigation mode to the end. In 

this process, it is assumed that detecting whether GNSS 

signal can be used or not, and switching navigation node, 

are accomplished by another algorithm. The detailed flight 

profile is shown in Table 1.

The ground surface has a slope angle of 5 degrees, after 

150 meters in an easterly direction, and -7 degrees between 

-100 meters and 80 meters in an easterly direction, at the 

end of the trajectory of the vehicle, as shown in Fig. 6. When 

generating height distribution, the horizontal position 

resolution is set to 0.1 meters.

The total simulation time is set to 75 seconds, and during 

the beginning 10 seconds, an initial alignment process is 

conducted, to calculate the initial attitude, and estimate 

biases of the IMU measurements. GNSS signal outage occurs 

from 10 seconds after the vehicle starts moving, to the end. 

In this process, bias values and the covariance matrix that 

are estimated just before the GNSS signal blockage occurs 

are used as the initial bias values and covariance matrix in 

the proposed system. The IMU operates at 100Hz, and the 

vision sensor and LiDAR provide their measurements at 5Hz. 

Specifications of the sensors are presented in Table 2 below. 

4.2 Results

In the simulation, the initial alignment is done in advance, 

to generate the initial bias and covariance estimate value. Fig. 

7 shows the horizontal position estimate results. In the case 

of the INS only system, the error of the estimate gradually 

increases and diverges as time goes on, after the GNSS signal 

outage occurs. In particular, the error in an easterly direction 

is beyond 200 meters. On the other hand, the IMU/Vision/

Lidar integrated system tracks the reference trajectory well, 

and its divergent characteristic becomes much weaker than 

the other. This is because the optical flow vectors and LiDAR 

measurements are utilized, for estimating the INS errors in 

the integrated navigation filter.

The altitude estimate results are very similar to the 

Table 2. Sensor data specification
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Sensor Specification 

IMU 
Angular velocity Initial bias error: ±3 degree/s (±1σ) 

Bias stability: 25 degree/h (1σ) 

Acceleration Initial bias error: ±50 mg (±1σ) 
Bias stability: 0.5 mg (1σ) 

Vision 
sensor Optical flow error: 1 pixel (1σ) 

LiDAR Angle resolution: 1 degree 
Range accuracy: 0.03 m (1σ) 
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The altitude estimate results are very similar to the horizontal position estimate results. Fig. 7 

shows the vertical position estimate results. In this graph, the INS error diverges, as time goes on; 

whereas the integrated system shows reliable estimation performance. Despite its good estimation 

performance, the estimation error grows slightly during short intervals of around 25 sec and 60 sec, 

where the error in range measurement increases notably. This occurs when the LiDAR heads the 

intersection regions, in which the flat surface and sloping surface coexist at around 25 sec, and the flat 

surface and two sloping surfaces coexist at around 60 sec. Measurement errors are relatively amplified, 

as the angle between the sloping surface and the LiDAR measurements gets smaller. Furthermore, the 

horizontal position resolution, when generating the height distribution of the ground surface, is 

correspondingly degraded. 
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Fig. 7. Vertical position estimate results 
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horizontal position estimate results. Fig. 8 shows the 

vertical position estimate results. In this graph, the INS error 

diverges, as time goes on; whereas the integrated system 

shows reliable estimation performance. Despite its good 

estimation performance, the estimation error grows slightly 

during short intervals of around 25 sec and 60 sec, where the 

error in range measurement increases notably. This occurs 

when the LiDAR heads the intersection regions, in which 

the flat surface and sloping surface coexist at around 25 

sec, and the flat surface and two sloping surfaces coexist at 

around 60 sec. Measurement errors are relatively amplified, 

as the angle between the sloping surface and the LiDAR 

measurements gets smaller. Furthermore, the horizontal 

position resolution, when generating the height distribution 

of the ground surface, is correspondingly degraded.

Fig. 9 shows the velocity estimate results. In common 

with the position estimate results, the performance of the 

integrated system is better than that of the INS only system. 

Quantitative error analysis of the estimated position/

velocity is presented in Table 3. Root mean square errors 

(RMSE) of the estimated position/velocity are calculated, 

using the simulated true values. 

Fig. 10 shows estimate results of the slope angle and height 

of the ground surface. The estimated slope angle is not the 

slope angle of the real ground surface, but that of the virtual 

ground surface. Thus, in the intersection areas, the estimated 

slope is different from the true slope. Also, the characteristic 

of the altitude measurement model is reflected in the 

estimation result of the height of ground surface. In this 

graph, the error of the estimated height of the ground surface 

becomes slightly larger, since the LiDAR measurement error 

and the error of the estimated forward velocity affect height 

variation of the ground surface. 

In this simulation, the integrated filter cannot estimate all 

state variables, due to the limitation of the flight maneuvers, 

which can affect the observability of the system. The 

proposed system can be modeled as PWCS (Piece-Wise 

Constant Systems), and their observability can be analyzed 

by SOM (Stripped Observability Matrix) rank analysis. Since 

observable state variables and their linear combinations are 

determined according to the maneuvering mode of a vehicle, 

the proposed system can be a fully observable system, when 

longitudinal and lateral acceleration are applied to the 

system. Verification of this theoretical analysis result can 

be further investigated, via more advanced simulations and 

experiments.

5. Conclusions

In this paper, we proposed a Vision/LiDAR aided 

integrated navigation system, in the limited environments in 

which GNSS signals cannot be used, the height of the ground 
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In this simulation, the integrated filter cannot estimate all state variables, due to the limitation of the 
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same time, the height of the ground surface is estimated, by using forward/backward LiDAR 
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vision sensor and LiDAR measurements. The horizontal 

velocity estimate of the INS is corrected, by using optical flow 

measurements from the vision sensor, and range information 

between the system and the ground surface, from LiDAR. At 

the same time, the height of the ground surface is estimated, 

by using forward/backward LiDAR measurements; therefore, 

with the estimated height, the accurate altitude can be 

obtained. For these purposes, an integrated navigation filter 

is constructed, based on the EKF framework. The feasibility 

of the system is proved via simulation results.

In the simulation, the performance of the proposed 

integrated navigation system was verified, by comparing the 

navigation performance of the proposed system, with that 

of the INS only system when GNSS signals cannot be used. 

As a result, our proposed integrated system provides more 

accurate navigation solutions than the INS. However, the 

problem that position error slowly increases still remains, 

because the system navigates relatively, without absolute 

navigation information, such as GNSS signals, landmarks, 

and so on. This problem is regarded as an inevitable 

limitation of a standalone navigation system.

The integrated navigation system proposed in this paper 

is expected to be applicable to various fields that require 

relative navigation information, such as a low altitude 

UAV that operates in the downtown area, or jamming 

environments, in which the GNSS availability is low.
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where,  

 , L : longitude and latitude, respectively. 
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ie : Earth rate vector 

Nf , Ef , Df : specific force with respect to navigation frame 

sL = sin(L), cL = cos(L) 

where, 
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