DOI QR코드

DOI QR Code

Comparison of Improving Dewatering Process at Clay-Sandy Soil based on Pulse-Electrokinetic Technology and Continuous-Electrokinetic Technology

펄스동전기법과 연속처리동전기법을 이용한 점토성-사질토의 탈수화 효율 비교

  • Shin, Sanghee (Geotechnical Engineering Research Division, Korea Institute of Construction and Technology)
  • Received : 2014.01.06
  • Accepted : 2014.02.18
  • Published : 2014.04.01

Abstract

Pulse electrokinetic technology is proposed for improving the dewatering-process from clay-sandy soil. Proposed electrokinetic technology is to be the dewatering process due to fluid movement of current flow for the stability of clay-sandy soils. Samples produced in this study were completed to verify the proposed performance for 7 days by gradually increasing the pressure to the final pressure of 30 psi ($2.11kgf/cm^2$) through the compression process. In this study, pulse electrokinetic treatment and conventional continuous electrokinetic treatment are tested and observed, respectively. The condition of continuous electrokinetic treatment is a continuous process during 48 hours. And the condition of pulse electrokinetic treatment system is to interrupt the power three times for 48 hours, every 8 hours. These treatments are that the voltage gradient is 3 V/cm. As a result, the efficiency of pulse electrokinetic is similar to the continuous electrokinetic. The power consumption efficiency of pulse electrokinetic is better than continuous electrokinetic.

펄스동전기법은 점토성-사질토에서 탈수화 공정을 효율적으로 진행하기 위해 제안되었다. 제안된 동전기법은 점토성-사질토에서 토양 안정성의 증진을 위해 전류 흐름에 따르는 유체의 이동에 의한 탈수화 공정을 진행하는 것이다. 제안된 동전기법의 성능을 확인하기 위해 제작된 샘플은 총 7일간에 점진적으로 압력을 증가시켜 30 psi($2.11kgf/cm^2$)의 최종압력으로 압축과정을 거쳐 완성되었다. 기존의 연속적인 처리와 펄스방식으로 처리하는 공정을 비교하여 각각의 특성을 관찰하였다. 각각의 테스트는 48시간 동안 3 V/cm의 전압 경사 조건으로 연속적인 처리공정과 48시간 동안 총 8시간씩 3회에 걸쳐 전기를 차단하는 펄스방식으로 진행하였다. 그 결과, 펄스방식의 효율이 연속처리방식의 효율과 비슷한 것으로 나타났고 펄스방식이 연속처리방식보다 전력소비가 약 50 % 감소로 그 경제성을 입증하였다.

Keywords

References

  1. Ambah, S. A., Chilingar, G. V. and Beeson, C. M. (1964), Use of direct electrical current for increasing the flow rate of reservoir fluids during petroleum recovery, Journal of Canadian Petroleum Technology, Vol. 3, No. 1, pp. 8-14. https://doi.org/10.2118/64-01-02
  2. Casagrande, I. L. (1937), Full scale experiment to increase bearing capacity of piles by electrochemical treatment, Bautechnique, Vol. 15, No. 1, pp. 14-16.
  3. Casagrande, I. L. (1947), The application of electro-osmosis to practical problems in foundations and earthworks, H.M. Stationery Office, 15 p.
  4. Chilingar, G. V., Adamson, L. G., Armstrong, R. A. and Beeson, C. M. (1964), Soils stabilized through electroosmosis, Southwest Builder and Contractor, Vol. 145, No. 24, pp. 100-102.
  5. Chilingar, G. V., Adamson, L. G., Rieke, H. H. and Gray, R. R. (1968), Electrochemical treatment of shrinking soils, Engineering Geology, Vol. 2, No.3, pp. 197-203.
  6. Chilingar, G. V., Amba, S. A. and Beeson, C. M. (1965), Application of electrokinetic phenomena in civil engineering and petroleum engineering, Annals of the New York Academy of Science, Vol. 118, No. 14, pp. 585-602.
  7. Pamukcu, S., Weeks, A. and Wittle, J. K. (1997), Electrochemical extraction and stabilization of selected inorganic species in porous media, Journal of Hazardous Materials, Vol. 55, No. 1-3, pp. 305-318. https://doi.org/10.1016/S0304-3894(97)00025-3
  8. Pamukcu, S., Weeks, A. and Wittle, J. K. (2004), Enhanced reduction of Cr (VI) by direct electrical current in a contaminated clay, Environmental Science Technology, Vol. 38, No. 4, pp. 1236-1241. https://doi.org/10.1021/es034578v
  9. Probstein, R. F. and Hicks, R. E. (1993), Removal of contaminants from soils by electric fields, Science, Vol. 260, No. 5107, pp. 498-503. https://doi.org/10.1126/science.260.5107.498
  10. Shin, S. H. (2103), Application for improving resource recover at clay-sandy soil based on electrokinetic technology, Journal of the Korean Geo-Environmental Society, Vol. 14, No. 10, pp. 5-9 (in Korean).
  11. Shin, S. H., Chilingar, G. V., Haroun, M., Ghosh, B., Meshkati, N., Pamukcu, S., Wittle, J. K. and Badawi, M. A. (2012), The effect of generated chlorine gas on electroremediation of heavy metals from offshore muds, Journal of Environmental Protection, Vol. 3, No. 5, pp. 363-373. https://doi.org/10.4236/jep.2012.35046
  12. Shin, S. H., Chilingar, G. V., Haroun, M., Wittle, J. K., Meshkati, N., Pamukcu, S., Jeoung, J. H. and Koo, H. B. (2013), Electrokinetics technology to improve acidizing of carbonate reservoir rocks, Journal of Environmental Protection, Vol. 4, No. 4A, pp. 1-3.
  13. Winterkorn, H. F. (1947). Fundamental similarities between electroosmosis and thermo-osmosis, Proc. 27th Annual Meeting, HRB, pp. 443-455.
  14. Winterkorn, H. F. (1955), The science of soil stabilization, HRB Bulletin Vol. 108, pp. 1-24 https://doi.org/10.2307/1538390
  15. Wittle, J. K., Hill, D. G. and Chilingar, G. V. (2011), Direct electric current oil recovery (EEOR) - a new approach to enhancing oil production, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 33, No. 9, pp. 805-822. https://doi.org/10.1080/15567036.2010.514843