• Title/Summary/Keyword: continuous deposition

Search Result 187, Processing Time 0.032 seconds

Seasonal Variation and Preservation Potential of Tidal-Flat Sediments on the Tidal Flat of Gomso Bay, West Coast of Korea

  • Chang, Jin-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.19-22
    • /
    • 2004
  • Seasonal changes of topograpy, sediment grain size and accumulation rate on the Gomso-Bay tidal flat(Fig. 1), west coast of Korea, have studied in order to understand the seasonal accumulation pattern and preservation potential of tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheiers accelerates during the winter and typhoon period, but it almost stops in summer when mud deposition is instead predominant on the middle to upper tidal flat. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods(Fig. 2). Measurements of accululation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface(Table 1) : the upper flat, where the accumulation rate of summer was generally higher than that of winter, was characterized by a continuous deposition throughout the entire year, whereas on the middle flat, sediment accumulations were concentrated in winter realtive to summer, and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Cancores taken across the tidal flat reveal that sand-mud interlaers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore(Fig. 3). Based on above results, it is suggested that the storm deposits formed by winter stors and typhoons would consist of the major part of the Gomso-Bay deposits(Fig. 4).

  • PDF

Deposition of copper dots with new copper precursors (새로운 Copper 전구체를 이용한 구리점 증착)

  • Kang, Sang-Woo;Seong, Dae-Jin;Shin, Yong-Hyoen;Rhee, Shi-Woo;Yun, Ju-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.485-492
    • /
    • 2006
  • Two new copper(I) complexes with organic ligands, $[Cu^I(hfac)]_2(DVTMSO)$ and $[Cu^I(hfac)]_2(HD)$ (hfac=hexafluoroacetylacetonate, DVTMSO=1,2-divinylte-tramethyl-disiloxane, HD=1,5-hexadiene) were synthesized and used for copper metal-organic chemical vapor deposition. In these compounds, two Cu(hfac) fragments are bonded by one neutral ligand forming unusual structure with respect to other Cu(I) complexes. The compounds exhibited relatively high volatility and stability when compared to other copper(I) precursors. By using the reported compounds as precursors, a continuous Cu layer was not formed but the Cu islands were only observed. And the shape and size of Cu islands are significantly changed as a function of the substrate temperature.

Characteristics of IZO/Ag/IZO Multilayer Electrode Grown by Roll-to-roll Sputtering for Touch Screen Panel

  • Cho, Chung-Ki;Bae, Jin-Ho;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.125-125
    • /
    • 2011
  • In this study, we investigated the electrical, optical, structural, and surface properties of indium zinc oxide (IZO)/Ag/IZO multilayer electrode grown by specially designed roll-to-roll sputtering system using the flexible substrate. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO/Ag/IZO multilayer electrode. At optimized conditions, the bottom IZO layer (40 nm) was deposited on a flexible substrate. After deposition of the Bottom IZO layer, Ag layer was deposited onto the bottom IZO film as a function of DC power (200~500 W). Subsequently, the top IZO layer was deposited onto the Ag layer at identical deposition conditions to the bottom IZO layer (40 nm). We investigated the characteristics of IZO/Ag/IZO multilayer electrode as a function of Ag thickness. It was found that the electrical and optical properties of IZO/Ag/IZO multilayer electrode was mainly affected thickness of the Ag layer at optimized condition. In case of IZO/Ag/IZO multilayer electrode with the Ag power (350W), it exhibited a low sheet resistance of 7.1 ohm/square and a high transparency of 86.4%. Furthermore, we fabricated the touch screen panel using the IZO/Ag/IZO multilayer electrode, which demonstrate the possibility of the IZO/Ag/IZO multilayer electrode grown by roll-to-roll sputtering system as a transparent conducting layer in the touch screen panel.

  • PDF

A Study on Electrochemical Regeneration of Waste Iron-chloride Etchant and Copper Recovery (전기화학 반응에 의한 염화철 폐식각액의 재생 및 구리 회수에 관한 연구)

  • Kim, Seong-En;Lee, Sang-Lin;Kang, Sin-Choon;Kim, I-Cheol;Sheikh, Rizwan;Park, Yeung-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.183-190
    • /
    • 2012
  • Electrochemical regeneration of the iron chloride waste solution from PCB etching reduces environmental contamination and produces copper as by-product, so the economic feasibility is high. But iron chloride waste solution contains iron and copper and the reactions occurring in the electrolytic cell are complicated. In this work, the oxidation of iron chloride and copper deposition were examined through batch electrolysis and the optimum conditions of the process parameters were found. The oxidation of ferrous chloride was achieved easily to the desired level. The copper deposition efficiency was high in the reaction using the carbon cathode when the copper density was 12 g/L with the electric current density of $350mA/cm^2$, and the ratio of the $Fe^{2+}$ ion was high. In addition, the possibility of the scale-up was confirmed in continuous operation of bench reactor using the optimum conditions obtained.

Study on Changing of the Channelbed Microtopography of Urban River - On Taebaek River of Chunchon city - (도시하천(都市河川)의 하상미지형(河床微地形) 변화(變化)에 관한 연구(硏究) - 춘천시(春川市) 태백천(太白川)을 대상으로 -)

  • Kim, Kyoung-Nam;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.81-89
    • /
    • 1997
  • Urban river needs continuous observation for the river conservation because river surrounding environment sensitivly is changed by human activity. In order to grasp the effect of human activity against Taebaek river in Chunchon city, this research analysed the channel shape change, fluctuation volume and bias degree over five times, for June, 1993 to June, 1996. The results were as follows : 1. The change of channel shape on each surveying time mainly occurred in June, 1996 and maximum deposition. $1,247m^3$ occurred on 19~20 section, maximum scouring, $340m^3$ occurred on 6~7 section, 2. When comparing with June, 1993, increased deposition volume of channelbed was about $4,600m^3$ in June, 1996, 3. The bias degree of channel mainly occurred in June, 1996 of surveying times and at 6, 7, 15, 16, 17, 18, 19, 20 line of surveying lines.

  • PDF

Fabrication of Ni Nanodot Structure Using Porous Alumina Mask (다공성 알루미나 마스크를 이용한 니켈 나노점 구조 제작)

  • Lim, Suhwan;Kim, Chul Sung;Kouh, Taejoon
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.126-129
    • /
    • 2013
  • We have fabricated an ordered Ni nanodot structure using an alumina mask prepared via 2-step anodization technique under phosphoric acid. We have formed a porous structure with average pore size of 279 nm on $2{\mu}m$ thick alumina film and the thermal deposition of thin Ni film though the mask led to the formation of ordered Ni nanodot structure with an average dot size of 293 nm, following the pore structure on the mask. We further investigated the magnetic properties of the nanodot structure by measuring the hysteresis curve at room temperature. When compared to the magnetic properties of a continuous Ni film, we observed the decrease in the squareness and the increase in coercivity along the magnetization easy axis, due to the isolated nanodot structure. Our study suggests that the ordered nanodot structure can be easiy fabricated with thin film deposition technique using anodized alumina mask as a mask.

Evaluation of Indoor Radon Levels in a Hospital Underground Space and Internal Exposure (의료기관 지하시설의 라돈가스 측정과 내부피폭 조사)

  • Song, Jea-Ho;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.231-235
    • /
    • 2011
  • Radium is rock or soil of crust or uranium of building materials and thorium after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like mine or basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. Radium sheath of medical institution treat person's life is possible big danger to professional regarding radioactivity who has much amount exposed radioactivity and weaker immune patient. so we do this test. Using measuring instrument at test is real time radium measuring instrument, Professional Continuous Radon monitor, and measuring places are basement first floor and second floor of two hospitals and measure from 10 a.m to 3 p.m. Measurement result of Professional Continuous Radon monitor is minimum 14.8 Bq/$m^3$ to maximum 70.3 Bq/$m^3$ and show domestic baseline below 148 Bq/$m^3$, effective dose-rate is minimum 0.296 mSv to maximum 1.406 mSv that show 2.4 mSv, 10~58.3% level, exposed radiation amount from nature radiation one year.

Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film (실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링)

  • Im, YeonHo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.520-527
    • /
    • 2006
  • A realistic surface model is presented for prediction of various surface phenomena such as polymer deposition, suppression and sputtering as a function of incidence ion energy in high density fluorocarbon plasmas. This model followed ion enhanced etching model using the "well-mixed" or continuous stirred tank reactor (CSTR) assumption to the surface reaction zone. In this work, we suggested ion enhanced polymer formation and decomposition mechanisms that can capture $SiO_2$ etching through a steady-state polymer film on $SiO_2$ under the suppression regime. These mechanisms were derived based on experimental data and molecular dynamic simulation results from literatures. The model coefficients are obtained from fits to available beam and plasma experimental data. In order to show validity of our model, we compared the model results to high density fluorocarbon plasma etching data.

Tuning for Temperature Coefficient of Resistance Through Continuous Compositional Spread Sputtering Method (연속 조성 확산 증착 방법을 통한 저항 온도 계수의 튜닝)

  • Ji-Hun Park;Jeong-Woo Sun;Woo-Jin Choi;Sang-Joon Jin;Jin-Hwan Kim;Dong-Ho Jeon;Saeng-Soo Yun;Jae-Il Chun;Jin-Ju Lim;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.323-327
    • /
    • 2024
  • The low-temperature coefficient of resistance (TCR) is a crucial factor in the development of space-grade resistors for temperature stability. Consequently, extensive research is underway to achieve zero TCR. In this study, resistors were deposited by co-sputtering nickel-chromium-based composite compositions, metals showing positive TCR, with SiO2, introducing negative TCR components. It was observed that achieving zero TCR is feasible by adjusting the proportion of negative TCR components in the deposited thin film resistors within certain compositions. Additionally, the correlation between TCR and deposition conditions, such as sputtering power, Ar pressure, and surface roughness, was investigated. We anticipate that these findings will contribute to the study of resistors with very low TCR, thereby enhancing the reliability of space-level resistors operating under high temperatures.

Characteristics and Fabrication of Thermal Oxidized-SnO2 (SnO2 열산화감지막의 제작 및 특성)

  • Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.342-349
    • /
    • 2002
  • New formation technique of metal oxide sensing film was proposed m this paper. Silicon wafer with Pt electrodes was used as a substrate for depositing metal Sn film. Metal Sn was deposited in the state of not continuous film but only island state. The samples were prepared to obtain the optimal condition of metal Sn deposition. The resistances of deposited Sn onto Pt electrodes amounted to $1\;k{\Omega}$, $5\;k{\Omega}$, $10\;k{\Omega}$ and $50\;k{\Omega}$, respectively. Also The sample with $1,500\;{\AA}$ thickness of Sn was prepared m order to compare sensing properties between conventional type and proposing type. After deposition of metal Sn, $SnO_2$ was formed by thermal oxidation method for 3 hrs. in $O_2$ ambient at $700^{\circ}C$. Surface morphology, crystal structure and surface roughness of oxidized-sensing film were examined by SEM, XRD, and AFM, respectively. From the results of these analyses, the optimal deposition condition of Sn was that the Pt electrode resistance became $10\;k{\Omega}(300\;{\AA})$. Also, the sensing characteristics of fabricated sensing film for various concentrations of butane, propane and carbon monoxide gases were measured at he operating temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$, respectively. Although catalyst as not added to the sensing film, it has exhibited the high sensitivity to all the test gases.