• Title/Summary/Keyword: continuous contact

Search Result 380, Processing Time 0.028 seconds

Dynamic Modeling of a Novel ATC Mechanism based on 4-bar Linkage (4절링크를 기반으로 하는 신개념 ATC 메커니즘의 동역학 해석)

  • Lee, Sangho;Kim, Jong-Won;Seo, TaeWon;Kim, Jongwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Recently, demands on the tapping machine are increased due to the case of a cell phone is changed to metal such as aluminum. The automatic tool changer (ATC) is one of the most important devices for the tapping machine related to the speed and energy consumption of the machine. To reduce the consumed energy and vibration, the dynamic modeling is essential for the ATC. In this paper, inverse dynamic modeling of a novel ATC mechanism is introduced. The proposed ATC mechanism is composed of a double four-bar mechanism with a circular tablet to generate continuous rotation of the tablet. The dynamic modeling is performed based on the Lagrange equation with a modeling for the contact between the four-bar and the tablet. Simulation results for various working conditions are proposed and analyzed for the prototype design. The dynamic modeling can be applied to determine the proper actuator and to reduce the vibration and consumed energy for the ATC machine.

A Biomimetic Artificial Neuron Matrix System Based on Carbon Nanotubes for Tactile Sensing of e-Skin (인공촉각과 피부를 위한 탄소나노튜브 기반 생체 모방형 신경 개발)

  • Kim, Jong-Min;Kim, Jin-Ho;Cha, Ju-Young;Kim, Sung-Yong;Kang, In-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.188-192
    • /
    • 2012
  • In this study, a carbon nanotube (CNT) flexible strain sensor was fabricated with CNT based epoxy and rubber composites for tactile sensing. The flexible strain sensor can be fabricated as a long fibrous sensor and it also may be able to measure large deformation and contact information on a structure. The long and flexible sensor can be considered to be a continuous sensor like a dendrite of a neuron in the human body and we named the sensor as a biomimetic artificial neuron. For the application of the neuron in biomimetic engineering, an ANMS (Artificial Neuron Matrix System) was developed by means of the array of the neurons with a signal processing system. Moreover, a strain positioning algorithm was also developed to find localized tactile information of the ANMS with Labview for the application of an artificial e-skin.

Developing a Visiting Health Care Program at the Public Health Center in Korea (한국의 보건소 방문건강관리시스템 발전 과제)

  • Ryu, Ho-Shin;SeoMun, Gyeong-Ae;Hwang, Won-Sook
    • Journal of Home Health Care Nursing
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • This paper provides the guidelines from which to develop a visiting health care program at the Public Health Center in Korea and involves an expanded payment compensation system of preventive services based on the new long-term health insurance system in Japan. The function and management methods to achieve the goals practiced in a community contact center for elderly support which have recently been established will guide the specific directions and strategies that the Public Health Center should pursue. That is to say, comprehensive and continuous efforts will be put forth in preventive home visiting care targeting the elderly in certain jurisdictions. At this point in time in which the visiting care nursing program has not yet started, visiting health care provided by the Public Health Center oversees chronic diseases of a vulnerable population. But after it has been developed nationwide, the visiting health care system at the Public Health Center will be distinctive and focused on health promotion and prevention.

  • PDF

Electrical Properties of Silicone Rubber with Different Particle Size and Amount of ATH (ATH의 입자크기 및 첨가량에 따른 실리콘 고무의 전기적 특성)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae;Lee, Tae-Hui;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.227-230
    • /
    • 2003
  • Silicone rubber has very excellent chemical stability and hydrophobicity. A hydrophobic surface can prevent the formation of continuous water films on the surface in wet and heavily contaminated conditions. This phenomenon contributes to the suppression of leakage current and partial discharges on insulator surfaces. Silicone rubber has been used much for housing materials of polymer insulators. ATH is added to the silicone rubber for improvement of its resistance against surface discharge. In this paper, ATH with different particle size and content was added to the silicone rubber during compounding. Silicone rubber was deteriorated by a corona treatment. Hydrophobicity recovery rate after corona treatment and arc resistance of silicone rubber were investigated. Hydrophobicity recovery rate of silicone rubber was evaluated by the measurement of contact angle. Arc resistance was evaluated by measuring weight loss of silicone rubber after arc resistance test. It was observed that the hydrophobicity recovery rate and arc resistance of silicone rubber were different when different particle size and content of ATH were added.

  • PDF

A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling (열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.

Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells

  • Bahk, Young Yil;Pak, Jhang Ho
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.5
    • /
    • pp.679-684
    • /
    • 2016
  • Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-${\kappa}B$-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

Optimum process conditions for supercritical fluid and co-solvents process for the etching, rinsing and drying of MEMS-wafers (초임계 유체와 공용매를 이용한 미세전자기계시스템 웨이퍼의 식각, 세정을 위한 최적공정조건)

  • Noh, Seong Rae;You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study aims to select suitable co-solvents and to obtain optimal process conditions in order to improve process efficiency and productivity through experimental results obtained under various experimental conditions for the etching and rinsing process using liquid carbon dioxide and supercritical carbon dioxide. Acetone was confirmed to be effective through basic experiments and used as the etching solution for MEMS-wafer etching in this study. In the case of using liquid carbon dioxide as the solvent and acetone as the etching solution, these two components were not mixed well and showed a phase separation. Liquid carbon dioxide in the lower layer interfered with contact between acetone and Mems-wafer during etching, and the results after rinsing and drying were not good. Based on the results obtained under various experimental conditions, the optimum process for treating MEMS-wafer using supercritical CO2 as the solvent, acetone as the etching solution, and methanol as the rinsing solution was set up, and MEMS-wafer without stiction can be obtained by continuous etching, rinsing and drying process. In addition, the amount of the etching solution (acetone) and the cleaning liquid (methanol) compared to the initial experimental values can be greatly reduced through optimization of process conditions.

  • PDF

Long Life Design of SSD Test Gender by Reducing Ejecting Force (인출력 저감을 통한 SSD Test Gender의 장수명 설계)

  • Kim, Jae Kyung;Park, Hyung Suk;Lee, Ki Seok;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.139-144
    • /
    • 2020
  • Recently, the electronic equipment industry has become active due to the continuous increase in portable storage media with high-speed information communication, and in particular, the production of SSD(Solid State Drives) for miniaturization of mobile devices and high-speed information communication has increased rapidly. When the SSD is ejecting in the SSD test gender, the necessary ejecting force must be kept constant to have a lifespan applicable to the test device. When the ejecting force increased, it leads to wear of the link for ejecting, which causes a problem in that repeated durability decreases and the ejecting of the SSD becomes impossible. In this paper, the repeated durability test analysis according to the material and the reducing ejecting force design were performed to increase the life of the test gender for SSD inspection. The wear level of the pusher head and ejector was analyzed through repeated durability tests according to the material of the pusher head. The validity of the design was verified through the ejecting force test and repeated durability test of the Test gender, which was designed by carrying out the design to reduce the size and ejecting force of the test gender.

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile

  • Y. R. Yoo;D. H. Kim;G. B. Kim;S. Y. Won;S. H. Choi;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.322-329
    • /
    • 2023
  • There are a variety of heat exchangers used in automobiles, such as shell and tube heat exchangers, double tube heat exchangers, and plate heat exchangers. Most of them are water-cooled to prevent engine overheating. There have been reports of corrosion damage to these heat exchangers due to continuous wetting caused by external temperature differences, road pollutants, and snow removal. In addition, galvanic corrosion, which occurs when two dissimilar materials come into contact, has been identified as a major cause. In this study, corrosion characteristics and galvanic corrosion behavior of Al alloy (AA3003, AA4045 and AA7072) used in automobile heat exchangers were analyzed. Effective clad materials for heat exchanger tubes and fins were also evaluated. It was found that AA7072 should be applied as the cladding material for fin AA3003 and that AA4045 was suitable as a cladding material for tube AA3003 because this clad materials application was the most effective clad design to delay the occurrence of pinhole in the tube. Main factors influencing galvanic corrosion dissolution were found to be galvanic corrosion potential difference and galvanic corrosion current density.