DOI QR코드

DOI QR Code

Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile

  • Y. R. Yoo (Materials Research Center for Energy and Clean Technology, Andong National University) ;
  • D. H. Kim (Research & Development Team, SEJONG EV) ;
  • G. B. Kim (Department of Materials Science and Engineering, Andong National University) ;
  • S. Y. Won (Department of Materials Science and Engineering, Andong National University) ;
  • S. H. Choi (Department of Materials Science and Engineering, Andong National University) ;
  • Y. S. Kim (Materials Research Center for Energy and Clean Technology, Andong National University)
  • Received : 2023.10.06
  • Accepted : 2023.10.24
  • Published : 2023.10.30

Abstract

There are a variety of heat exchangers used in automobiles, such as shell and tube heat exchangers, double tube heat exchangers, and plate heat exchangers. Most of them are water-cooled to prevent engine overheating. There have been reports of corrosion damage to these heat exchangers due to continuous wetting caused by external temperature differences, road pollutants, and snow removal. In addition, galvanic corrosion, which occurs when two dissimilar materials come into contact, has been identified as a major cause. In this study, corrosion characteristics and galvanic corrosion behavior of Al alloy (AA3003, AA4045 and AA7072) used in automobile heat exchangers were analyzed. Effective clad materials for heat exchanger tubes and fins were also evaluated. It was found that AA7072 should be applied as the cladding material for fin AA3003 and that AA4045 was suitable as a cladding material for tube AA3003 because this clad materials application was the most effective clad design to delay the occurrence of pinhole in the tube. Main factors influencing galvanic corrosion dissolution were found to be galvanic corrosion potential difference and galvanic corrosion current density.

Keywords

Acknowledgement

This research was supported by a grant from the 2023-2024 Research funds of Andong National University, and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008458, HRD Program for Industrial Innovation).

References

  1. J. M. Kim, J. P. Lee, C. E. Lee, and S. M. Kum, Characteristics of thermal efficiency with changing distances between tubes for heat exchanger, Journal of Energy Engineering, 19, 177 (2010).
  2. W. S. Miller, L. Zhuang, and J. Bottema, Recent development in aluminum alloys for the automotive industry, Materials Science and Engineering: A, 280, 37 (2000). Doi: https://doi.org/10.1016/S0921-5093(99)00653-X
  3. P. D. Srivyas and M. S. Charoo, Application of hybrid aluminum matrix composite in automotive industry, Materials today: Proceedings, 18, 3189 (2019). Doi: https://doi.org/10.1016/j.matpr.2019.07.195
  4. M. Asadikiya and M. Ghorbani, Effect of inhibitors on the corrosion of automotive aluminum alloy in ethylene glycol-water mixture, Corrosion, 67, 126001 (2011). Doi: https://doi.org/10.5006/1.3666860
  5. Y. Liu and Y. F. Cheng, Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system, Materials and Corrosion, 61, 574 (2010). Doi: https://doi.org/10.1002/maco.200905323
  6. C. W. Kang, T. J. Kim, and C. W. Lee, Numerical analysis on the characteristics of thermal flow in an automobile radiator, Journal of the Korean Society of Manufacturing Process Engineers, 18, 55 (2019). Doi: https://doi.org/10.14775/ksmpe.2019.18.6.055
  7. S. B. Kwak, Ph.D. Thesis, pp. 1 - 2, Hanyang University, Seoul (2011).
  8. A. S. Fitrianto, C. Caing, H. A. Notonegoro, and B. Soegijono, Effect of titanium on corrosion behavior of aluminum alloy 3104 as a candidate material for radiator combustion engines, Flywheel, 7, 12 (2021). Doi: http://dx.doi.org/10.36055/fwl.v0i0.10855
  9. H. M Ali, H. Ali, H. Liaquat, H. T. B. Maqsood, and M. A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids, Energy, 84, 317 (2015). Doi: https://doi.org/10.1016/j.energy.2015.02.103
  10. O. K. Abiola and J.O.E. Otaigbe, Effect of common water contaminants on the corrosion of aluminum alloys in ethylene glycol-water solution, Corrosion Science, 50, 242 (2008). Doi: https://doi.org/10.1016/j.corsci.2007.06.013
  11. J. Zaharieva, M. Milanova, M. Mitov, L. Lutov, S. Manev, and D. Todorovsky, Corrosion of aluminum and aluminum alloy in ethylene glycol-water mixtures, Journal of Alloys and Compounds, 470, 397 (2009). Doi: https://doi.org/10.1016/j.jallcom.2008.02.079
  12. G. L. F. Mendonca, S. N. Costa, V. N. Freire, P. N. S. Casciano, A. N. Correia, and P. Lima-Neto, Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modeling methods, Corrosion Science, 115, 41 (2017). Doi: https://doi.org/10.1016/j.corsci.2016.11.012
  13. B. Jegdic, B. Bobic, and S. Linic, Corrosion behavior of AA2024 aluminium alloy in different temperatures in NaCl solution and with the CeCl3 corrosion inhibitor, Materials and Corrosion, 71, 352 (2020). Doi: https://doi.org/10.1002/maco.201911219
  14. S. Liu J. Dong W. W. Guan J. M. Duan R. Y. Jiang Z. P. Feng, and W. J. Song, The synergistic effect of Na3 PO4 and benzotriazole on the inhibition of copper corrosion in tetra-n-butylammonium bromide aerated aqueous solution, Materials and Corrosion, 63, 1017 (2012). Doi: https://doi.org/10.1002/maco.201106346
  15. L. Niu, Y. F. Cheng, and J. Mater, Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol-water solution, Journal of Materials Science, 42, 8613 (2007). Doi: https://doi.org/10.1007/s10853-007-1841-1
  16. S. Y. Cho, J. J. Kim, and H. J. Jang, Effects of Zn Coating and Heat Treatment on the Corrosion of Aluminum Heat Exchanger Tubes, Corrosion Science and Technology, 18, 24 (2019) Doi: https://doi.org/10.14773/cst.2019.18.1.24
  17. Y. R. Yoo, Y. I. Son, G. T. Shim, Y. H. Kwon, and Y. S. Kim, Influence of Graphite Epoxy Composite Material on the Electrochemical Galvanic Corrosion of Metals, Corrosion Science and Technology, 8, 27 (2009)
  18. S. Y. Hur, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6, Corrosion Science and Technology, 19, 75 (2020) Doi: https://doi.org/10.14773/cst.2020.19.2.75
  19. J. S. Yoon, S. H. Lee, and M. S. Kim, Fabrication and brazability of a three-layer 4343/3003/4343 aluminum clad sheet by rolling, Journal of Materials Processing Technology, 111, 85 (2001). Doi: https://doi.org/10.1016/S0924-0136(01)00517-9
  20. J. Lacaze and S. Tierce, Study of the microstructure resulting from brazed aluminum materials used in heat exchangers, Materials Science and Engineering: A, 413, 317 (2005). Doi: https://doi.org/10.1016/j.msea.2005.08.187
  21. X. X. Yao, R. Sandstrom, and T. Stenqvist, Strain-controlled fatigue of a brazed Al-Mn-Mg alloy at room temperature and at 75 and 180?C, Materials Science and Engineering: A, 267, 1 (1999). Doi: https://doi.org/10.1016/s0921-5093(99)00062-3
  22. D. P. Sekulic, P. K. Galenko, M. D. Krivilyov, L. Walker, and F. Gao, International Journal of Heat and Mass Transfer, 48, 2372 (2005). Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.034
  23. D. Laougli and F. Beniere, Evaluation of inhibitor efficiency on corrosion of the aluminum heat exchangers and radiators in central heating, Journal of Materials and Environmental Science, 3, 34 (2012). https://www.jmaterenvironsci.com/Document/vol3/3-JMES-66-2011-Laouali.pdf