• Title/Summary/Keyword: continuous bridge

Search Result 548, Processing Time 0.038 seconds

Seismic Response Control of Bridge Structure using Fuzzy-based Semi-active Magneto-rheological Dampers

  • Park, Kwan-Soon;Ok, Seung-Yong;Seo, Chung-Won
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.22-31
    • /
    • 2011
  • Seismic response control method of the bridge structures with semi-active control device, i.e., magneto-rheological (MR) damper, is studied in this paper. Design of various kinds of clipped optimal controller and fuzzy controller are suggested as a semi-active control algorithm. For determining the control force of MR damper, clipped optimal control method adopts bi-state approach, but the fuzzy control method continuously quantifies input currents through fuzzy inference mechanism to finely modulate the damper force. To investigate the performances of the suggested control techniques, numerical simulations of a multi-span continuous bridge system subjected to various earthquakes are performed, and their performances are compared with each other. From the comparison of results, it is shown that the fuzzy control system can provide well-balanced control force between girder and pier in the view point of structural safety and stability and be quite effective in reducing both girder and pier displacements over the existing control method.

  • PDF

A Study on Performance Improvements about Duct of Smoke Control System Combined with Air-Conditioning Equipment (공기조화설비 겸용 제연설비 덕트의 성능개선을 위한 연구)

  • Oh, Teakhum;Park, Chanseok
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.67-72
    • /
    • 2021
  • To ensure the safety and functionality of a railroad bridge, maintaining the integrity of the bridge via continuous structural health monitoring is important. However, most structural integrity monitoring methods proposed to date are based on modal responses which require the extracting process and have limited availability. In this paper, the applicability of the existing damage identification method based on free-vibration reponses to time-domain deflection shapes due to moving train load is investigated. Since the proposed method directly utilizes the time-domain responses of the structure due to the moving vehicles, the extracting process for modal responses can be avoided, and the applicability of structural health evaluation can be enhanced. The feasibility of the presented method is verified via a numerical example of a simple plate girder bridge.

Development and experimental study on cable-sliding modular expansion joints

  • Gao, Kang;Yuan, Wan C.;Dang, Xin Z.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.795-806
    • /
    • 2017
  • According to the characteristics of continuous beam bridges, the relative displacement is too large to collision or even girder falling under earthquakes. A device named Cable-sliding Modular Expansion Joints(CMEJs) that can control the relative displacement and avoid collision under different ground motions is proposed. Working principle and mechanical model is described. This paper design the CMEJs, establish the restoring force model, verify the force model of this device by the pseudo-static tests, and describe and analyze results of the tests, and then based on a triple continuous beam bridge that has different heights of piers, a 3D model with or without CMEJs were established under Conventional System (CS) and Seismic Isolation System (SIS). The results show that this device can control the relative displacement and avoid collisions. The combination of isolation technology and CMEJs can be more effective to achieve both functions, but it need to take measures to prevent girder falling due to the displacement between pier and beam under large earthquakes.

Field Test to Investigate the Thermal Stress of Continuous Welded Rail on High Speed Railway Bridges in Summer Period (고속철도 교량상 장대레일의 하절기 온도응력 계측)

  • Kwark, Jong-Won;Choi, Eun-Suk;Chin, Won-Jong;Lee, Jung-Woo;Kim, Byung-Suk;Kang, Jae-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.131-136
    • /
    • 2006
  • Most modern railways, especially the high speed railway tracks, use continuous welded rail(CWR) for the less maintenance. For the CWR track has very few expansion joints, track buckling has always been an unpredictable event and it happens mainly by high compressive stress in rail in summer period. Therefore, it is important to understand the variation of rail stress induced by thermal loads which has direct influence on the rail buckling and stability of railway track. This paper describes the experimental investigation of the variation of rail temperature and stress in a high speed railway track on bridge structure. Field measurement was performed to examine the correlation between the rail temperature and rail stress on the Korean High Speed Railway line. Regression functions were derived from measured data to determine the rail stress f3r an arbitrary rail temperature varies from 20 to 50 degree Celsius.

Time-Dependent Behavior of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의한 프리스트레스트 콘크리트 교량의 장기 거동 해석)

  • 오병환;최계식;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.73-76
    • /
    • 1989
  • A numerical procedure is developed to analyze the time-dependent behavior of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varing modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities.

  • PDF

Identification of Substructural Model using Measured Acceleration (측정가속도를 이용한 부분구조해석 모델의 설정)

  • 오성호;전상현;장정환;신수봉;최광규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.435-442
    • /
    • 2001
  • A substructural model for a part of a long continuous bridge is identified using measured acceleration at limited locations within the part. Boundary spring constants and structural properties are idenfitied using a system identification method. The proposed method has been examined through simulation studies for static and dynamic responses and the results are discussed in the paper. The method is applied to an actual plate-girder gerber bridge with modal response obtained from a moving truck and construction blasting vibration

  • PDF

Analytical Fragility Curves for Bridge (교량의 해석적 손상도 곡선)

  • Lee, Jong-Heon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.155-162
    • /
    • 1999
  • This paper presents a generation of analytical fragility curves for bridge. The analytical fragility curves are constructed on the basis of nonlinear dynamic analysis. Two-parameter lognormal distribution functions are used to represent the fragility curves with the parameters estimated by the maximum likelihood method. To demonstrate the development of analytical fragility curves, two of representative bridges with a precast prestressed continuous deck in the Memphis. Tennessee area are used.

  • PDF

Seismic Upgrading of Multi-Span continuous Bridges using Shear Keys (전단키를 이용한 다경간 연속교의 내진성능 향상 방법)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.313-318
    • /
    • 1999
  • The seismic performance of multi-span bridge without seismic detailing is found to be insufficient in longitudinal direction. Shear keys and stoppers can be introduced as an alternative to enhance seismic capacity. The capacity curve of bridge with shear keys is obtained considering two extreme contact conditions of shear keys. Its curve is converted into ADRS spectra and compared with demand spectra. It is concluded that seismic performance can be improved effectively by shear keys and its performance can be evaluated graphically on the ADRS specta.

  • PDF

Parametric Fragility Analysis of Steel Highway Bridges (매개변수를 고려한 강도로교의 취약도분석)

  • Choi, Eunsoo;Choi, Il-Yoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.334-343
    • /
    • 2003
  • 본 논문의 목적은 스팅베어링의 기존교량과 납-고무베어링(Lead-Rubber Bearing)으로 내진 보강된 교량에 대해서 갭(Gap)의 크기가 교량의 지진 취약도에 미치는 영향에 대해서 평가하였다. 이를 위해서 다경간 단순교(Multi-Span Simply Supported Bridge)와 다경간 연속교(Muti-Span Continuous Bridge)를 대상으로 취약도 분석을 실시하였다 또한 다양한 크기의 갭사이즈를 도입하여 해석을 실시하였다. 이를 통해서 갭사이즈의 변화가 각 교량의 구성품에 미치는 영향을 확률적으로 평가할 수 있었고, 합성된 취약도 곡선을 이용하여 최적의 갭사이즈를 확정할 수 있었다.

  • PDF

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.