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Abstract

This paper presents a generation of analytical fragility curves for bridge. The analytical
fragility curves are constructed on the basis of nonlinear dynamic analysis. Two-parameter
lognormal distribution functions are wused to represent the fragility curves with the
parameters estimated by the maximum likelihood method.

To demonstrate the development of analytical fragility curves, two of representative bridges
with a precast prestressed continuous deck in the Memphis, Tennessee area are used.

Key words : Fragility curves, maximum likelihood method, lognormal distribution.

1. Introduction

In performing a seismic risk analysis of
a structural system, it is imperative to
identify seismic vulnerability of component
structures associated with various states
of damage. The development of vulnerability
information in the form of fragility curves
is a widely practiced approach when the
information is to be developed accounting
for a multitude of uncertain sources
involved, for example, in estimation of
seismic hazard, structural characteristics,

soil-structure interaction, and site conditions.
In principle, the development of fragility
curves will require synergistic use of the
following methods: (1) professional judgement,
(2) quasi-static and design code consistent
analysis, (3) utilization of damage data
associated with past earthquakes, and (4)
numerical simulation of seismic response
of structures based on dynamic analysis.

This paper concentrates on the develop-
ment of analytical fragility curves for
bridges as described in (4) above, by
numerically simulating seismic response
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with the aid of structural dynamic
analysis. At the same time, this paper
introduces the development procedure of
fragility curves under the assumption that
they can be represented by two-parameter
lognormal distribution functions. Analytical
fragility curves are developed for typical
bridges in the Memphis, Tennessee area
on the basis of a nonlinear dynamic
analysis.

Two-parameter lognormal distribution
functions were traditionally used for fragility
curve construction. This was motivated by
its mathematical convenience in relating
the actual structural strength capacity
with the design strength primarily through
a seismic factor of safety which can be
factored into a number of multiplicative
safety factors, each associated with a specific
source of randomness and/or uncertainty.
When the lognormal assumption is made
for each of these factors, the overall seismic
safety factor also distributes lognormally
due to the multiplicative reproducibility of
the lognormal variables. This indeed was
the underpinning and practical assumption
that was made in the development of
probabilistic risk assessment methodology
for nuclear power plants in the 1970s and
in the early 1980s (NRC, 1983).

2. Analytical Fragility Curves

It is assumed that the fragility curves
can be expressed in the form of two-
parameter lognormal distribution functions,
and the estimation of the two parameters
(median and log-standard deviation) is
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performed with the aid of the maximum
likelihood method. For this purpose, the
PGA (Peak Ground Acceleration) is used
to represent the intensity of the seismic
ground motion, although the use of
intensity measures other than PGA such as
PGV (Peak Ground Velocity), SA (Spectral
Acceleration), SI (Spectral Intensity) and
MMI (Modified Mercalli Intensity) are
possible.

The likelihood function for the present
purpose is expressed as

L= [F@1-F@!'™

where F(.) represents the fragility curve
for a specific state of damage, @ is the
PGA value to which bridge 7 is subjected,
%=1 of 0 depending on whether or not
the bridge sustains the state of damage
under PGA=g;, and N is the total number
of bridges inspected after the earthquake.
Under the current lognormal assumption,
F(a) takes the following analytical from

a

In
F(a)=cb{ £

¢ (2)

in which “a” represents PGA and @[] is

the standardized normal distribution
function.

The two parameters ¢ and ¢{in Eq. 2
are computed as ¢y and & satisfying the
following equations to maximize In L and

hence L;



dinl, _ dinl = (3)

dc d¢

This computation is performed by imple-
menting a straightforward optimization
algorithm.

3. Numerical Application

3.1 Bridge Model

To demonstrate the development of

analytical fragility curves, two of

representative bridges with a precast
prestressed continuous deck in the Memphis,
Tennessee area studied by Jernigan and Hwang
(1997) are used. The plan, elevation
and column cross-section of Bridge 1 are
depicted in Fig. 1. Geometry and configuration
of Bridge 2 is similar to Bridge 1. Bridge 2
also has a precast prestressed continuous
deck. However, the deck is supported by 2
abutments and 4 bents with 5 spans equal
to 10.7 m (35"), 16.8 m (55"), 16.8 m
(55"), 16.8 m (55") and 10.7 m (35").
Each bent has 3 columns of 5.8 m (19"
high with the same cross-sectional and
reinforcing characteristics as those of Bridge
1. Following Jernigan and Hwang (1997),
the strength f. of 20.7 MPa (3000 psi)
concrete used for the bridge is assumed to
be best described by a normal distribution
with a mean strength of 31.0 MPa (4500
psi) and a standard deviation of 6.2 MPa
(900 psi), whereas the yield strength f, of
grade 40 reinforcing bars used in design is
described by a lognormal distribution
having a mean strength of 336.2 MPa
(48.8 ksi) with a standard deviation of

36.0 MPa (5.22 ksi). Then, a sample of
ten nominally identical but statistically
different bridges are created for each of Bridge
1 and 2 by simulating ten realizations of
fc and £y according to respective probability
distribution functions assumed. Other
parameters that could contribute to
variability of structural response were not
considered in the present analysis under
the assumption their contributions can be

disregarded
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Fig. 1 A representative Memphis Bridge (Bridge 1)

3.2 Seismic Ground Motion

For the seismic ground motion, the time
histories generated by Howard et. al
(1996) at the Center for Earthquake
Research and Information, the University
of Memphis are used. These time histories
are generated by making use of the
Fourier acceleration amplitude on the
base rock derived under the assumption of
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a far—field point source by Boore (1983).
In fact, the study area is located 40 km
to 100 km from Marked Tree, Arkansas,
the epicenter of the 1846 earthquake
which magnitude is 6.5.

Upon wusing seismologically consistent
values for the parameters in the Boore
and other related models and converting
the Fourier acceleration amplitude to the power
spectrum, corresponding time histories are
generated in terms of sample function of a
normal (Gaussian) stationary process on
the base rock by means of the spectral
representation method by Shinozuka and
Deodatis (1991).

The seismic wave represented by these time
histories is propagated through the
surface layer to the ground surface by
means of the SHAKE 91 computer code by
Idriss and Sun (1992).

And the results are appropriately
modulated in the time domain(Howard et.
al, 1996), for the use of response analysis.
To minimize computational effort, samples
of 10 time histories are randomly selected
from 50 histories generated by Howard et.
al (1996) for each of the following eight
combinations of M (magnitude) and R
(epicentral distance): M=6.5 with R=80
km and 100 km, M=7.0 with R=60 km
and 80 km, M=7.5 with R=40 km and 60
km, and M=8.0 with R=40 km and 60
km.

Typical ground motion time histories for
two extreme combinations M=8.0 with
R=40 km and M=6.5 with R=100 km are
shown in Fig. 2. The spectral accelerations
for the above input ground accelerations
are shown in Fig. 3 to provide an insight
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Fig. 2 Typical Input Ground Acceleration
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Fig. 3 Acceleration Response Spectra

to the frequency content of these ground
motion time histories. For the purpose of
response analysis, a sample of ten time
histories generated from each M and R
combination is matched with a sample of
ten bridges in a pseudo Latin Hypercube
format. Hence, each statistical representation
of Bridges 1 and 2 are subjected to 80



ground motion time histories.

3.3 Fragility Curves

This study utilizes the SAP 2000 finite
element code, which can in approximation
simulate the state of damage of each
bridge under ground acceleration time
history. This computer code can provide
hysteretic elements that are in essence
bilinear without strength or stiffness
degeneration.

The states of damage considered for
both Bridges 1 and 2 are major (all the
columns subjected to ductility demand =
2) and at least minor (all the columns
subjected to ductility demand = 1) under
the longitudinal applications of ground
motion.

Fig. 4 shows the fragility curve of
Bridge 1 for exceeding major damage
state. Eighty diamonds plotted on the two
horizontal axes represent x;=0 (for state
of no damage) and x;=1 (for state of
major damage) in relation to Eq. (1)
under the eighty earthquakes generated.
The corresponding fragility curves are
derived on the basis of these diamonds in
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Fig. 4 Fragility Curves for Bridge 1-major damage

conjunction with Egs. (1)-(3). Fig. 5
shows the fragility curves associated with
major and minor states of damage for
Bridge 1 and 2. The analysis performed
under the ground motion in the
transverse direction produced states of
lesser damage and hence not reported in

this paper.

Fig. 5 Fragility Curves for Memphis Bridge

3.4 Development of Combined Fragility Curves

Use of a fragility curve representing a
family of bridges with a similar structural
attributes, primarily categorized in specific
structural types, expedites the process of
urban earthquake disaster estimation. A well
known example of such a categorization is
found in ATC 13(1989). DBridges 1 and 2
in the Memphis area analyzed in an
earlier section belong to such a family of
bridges that can be categorized as precast
prestressed continuous deck bridges with
short to medium length. This section
demonstrates how a combined fragility
curves for a category of bridges can be
derived from individual fragility curves
constructed for member bridges in the
category.
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The fragility curves (associated with
specific states of damage) analytically
Bridges 1 and 2 in the
Memphis area can be combined in the

developed for

following fashion in order to develop a
combined fragility curve for a mixed set of
population of bridges in which there are
and N; and N2 of Bridges 1 and 2
respectively. In this case, the combined
fragility curve Fc(a) is obtained as

Fla) =P, - Fi(a)+ P, - Fy(a) (4)

where Fi(a) is the fragility curve for
Bridge 7 and

N;

Piss (N, +Ny)

(5)

is the probability with which a Bridge ?
will be chosen at random from the
combined population. It is noted that
Fda) thus developed is no longer a
lognormal distribution.

Since the density function of Fd(a) can
be written as

fla)=Pfi(@) + Pyfy(a) (6)

and since fi(a) is a lognormal density
function, the expected value of @ =1na for
the combined distribution is given by

—a:PI]IlC1+P2]I]CZ=P1F1+P2?2 (7)

in which ¢; is the median associated with
fi(a) and
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a;=Inc; (8)

If @ is defined as

a;=Ilna, (9)
then
a,= cfl . C;Z (10)

In order to obtain the standard
deviation ¢ . of a= In a of the

combined distribution, one recognizes
E=FEa—a)’=Ed)—2® (11
and

E(a®) =P1fa2¢1(a)da+P2fa2¢2(a)da s
12

=P, +P, &

where ¢i(a) is normal density function of

@ with mean In ¢; and standard deviation

{; One further recognizes that

E{a—a)'= [(a— a)*¢{a)da

= (13)
= E(d)~a'=¢!
from which it follows that
E{e)=[d¢{a)da=+ o  (14)

Combining equations (7), (11), (12),
(13) and (14) gives



2 =P8+Pg+P(1-P) 2

- (15)
+P2(1—P2) ay _2P1P2 a1y

The combined fragility curve 1is not
lognormal as explained earlier. It seems
reasonable to assume, however, that the
combined curve is lognormal with the
mean and variance estimated respectively
by Egs. (7) and (14). This approximation
is expected to be particularly valid when
the bridges under consideration are
designed under the same design codes.
Fig. 6 shows a combined fragility curve
for Bridge 1 and 2. Solid curve is in fact
indistinguishable from the lognormal
distribution with the median computed (in
from Eq. (10) and

log-standard deviation from Eq. (14).
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Fig. 6 Combined Fragility Curve for Bridge 1 and 2

4. Conclusions

This study presented a generation of
fragility curves for bridge. Analytical
fragility curves were obtained for typical
bridges in the Memphis, Tennessee area
with the aid of dynamic analysis. Two

parameter lognormal distribution functions
were used to represent the fragility curves
with the two parameters estimated by
means of the maximum likelihood method.

In addition, the method of combining two
fragility curves is presented. Statistical
procedures were presented to get the median
and log-standard deviation of combined
fragility curve. It can be generalized for
any number of fragility curves.
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