• Title/Summary/Keyword: continuity equation

Search Result 386, Processing Time 0.023 seconds

An analytical solution of bending thin plates with different moduli in tension and compression

  • He, Xiao-Ting;Hu, Xing-Jian;Sun, Jun-Yi;Zheng, Zhou-Lian
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.363-380
    • /
    • 2010
  • Materials which exhibit different elastic moduli in tension and compression are known as bimodular materials. The bimodular materials model, which is founded on the criterion of positive-negative signs of principal stress, is important for the structural analysis and design. However, due to the inherent complexity of the constitutive relation, it is difficult to obtain an analytical solution of a bimodular bending components except in particular simple problems. Based on the existent simplified model, this paper solves analytically bending thin plates with different moduli in tension and compression. By using the continuity conditions of stress components in unknown neutral layer, we determine the location of the neutral layer, and derive the governing differential equation for deflection, the flexural rigidity, and the internal forces in the thin plate. We also use a circular thin plate with bimodulus to illustrate the application of this solution derived in this paper. The results show that the introduction of different moduli has influences on the flexural stiffness of the bending thin plate.

The Effects of Packing and Cooling Stages on the Molded Parts in Injection Molding Process (사출 성형시 보압 및 냉각 과정이 성형품에 미치는 영향)

  • 구본흥;신효철;이호상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1150-1160
    • /
    • 1993
  • The behavior of polystyrene in the strip cavity during the packing and cooling stages for an injection molding process is examined numerically. The mathematical model is based on the unified post-filling model and finite element/finite difference methods are used to solve simultaneously the continuity, momentum and energy equations coupled to an equation of state. Simulated results show that the density of the molded parts is lower in the core than at the skin, and that the hotter the melt or the higher the packing pressure, the higher the density in the core. The density variation during the packing stage comes up to 50% compared with the total density variation. Also, the density variation after gate sealing and the effect of cooling rate on the equation of state are negligible.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

Application of Spectral Method to Two-Dimensional Unsteady Viscous Flow Analysis (스펙트럴법을 적용한 2차원 비정상 점성유동해석)

  • Shin, Y.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.48-59
    • /
    • 1996
  • The numerical step in the unsteady viscous flow analysis can be divided in the space analysis step satisfying continuity equation and the time marching step. In this study the spectral method is applied to solve the pressure Poisson equation in the space analysis step. If the highest order differential term of the pressure Poisson equation is transformed by Fourier series, pressure arid its first derivatives can be expressed by the integral form of Fourier series. So Gibb's phenomena can be eliminated and the spectral method can be applied to non-periodic problems. The numerical analysis of unsteady viscous flow around 2-dimensional circular cylinder and wing is carried out and compared for verification.

  • PDF

Free Vibration of Radially Multi-Delaminated Beams (방사형 다층간분리된 보의 자유진동)

  • 이성희;마석오;한병기;박대효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.25-32
    • /
    • 2002
  • Free vibration analysis of radialiy multi-delaminated beams with through-the-width multi-delamination is performed in the present study. The multiple delaminations are considered to be in a radial manner through the thickness from the top surface of the beam. The natural frequencies of the radially multi-delaminated beams are calculated from a new algorithm that is based on the single compound delaminated beam model. That is, beams with radial multi-delaminations are regarded as the sum of a single compound delamlnated beam that is the single sub-delaminated beam from the top surface of global beam. Each result of frequency equation for the single delaminated beam with unknown boundary conditions obtained through continuity conditions Is updated to the next one, With these sequential operations, the final frequency equation of radially multi-delaminated beams is obtained for both ends boundary conditions of global beam. The numerical results carried out for the beams are compared with those of some references to give the reliance on the proposed algorithm and to investigate the effects of the shape, number, size of multi-delaminations on the natural frequency. Compared with the other previously presented model, the proposed algorithm is more flexible in modeling and formulating as the total array size of frequency equation is always four by four. Therefore, the proposed algorithm will reduce the effort of user in formulating the physical model to the numerical model.

  • PDF

Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders (축대칭 실린더형상 주위 부분공동 유동의 전산해석)

  • Kim, Bong-Su;Lee, Byung-Woo;Park, Warn-Gyu;Jung, Chul-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.

A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION

  • Sun, Yinan;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.553-569
    • /
    • 2021
  • In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: ∂βtu - div(a∇u) = f, 1 < β < 2. We first construct a difference formula to approximate ∂βtu by using an interpolation of derivative type. The truncation error of this formula is of O(△t2+δ-β)-order if function u(t) ∈ C2,δ[0, T] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This error order can come up to O(△t3-β) if u(t) ∈ C3 [0, T]. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the H1-norm and L2-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.

Extension of Compressible Flow Solver to Incompressible Flow Analysis (비압축성 유동 해석을 위한 압축성 유동 해석자 확장)

  • Kim, Donguk;Kim, Minsoo;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.449-456
    • /
    • 2021
  • In this paper, we present a strategy to extend solution capability of an existing low Mach number preconditioned compressible solver to incompressible flows with a little modification. To this end, the energy equation that is of the same form of the total energy equation of compressible flows is used. The energy equation is obtained by a linear combination of the thermal energy equation, the continuity equation and the mechanical energy equation. Subsequently, a modified artificial compressibility method in conjunction with a time marching technique is applied to these incompressible governing equations for steady flow solutions. It is found that the Roe average of the common governing equations is equally valid for both the compressible and incompressible flow conditions. The extension of an existing compressible solver to incompressible flows does not affect the original compressible flow analysis. Validity for incompressible flow analysis of the extended solver is examined for various inviscid, laminar and turbulent flows.

A Mathematical Model of Return Flow outside the Surf Zone (쇄파대(碎波帶) 밖에서 return flow의 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.355-365
    • /
    • 1994
  • An analytical model of return flow is presented outside the surf zone. The governing equation is derived from the Navier-Stokes equation and the continuity. Each term of the governing equation is evaluated by the ordering analysis. Then the infinitesimal terms, i.e. the turbulent normal stress, the squared vertical velocity of water particle and the streaming velocity, are neglected. The driving forces of return flow are calculated using the linear wave theory for the shallow water approximation. Especially, the space derivative of local wave heights is described considering a shoaling coefficient. The vertical distribution of eddy viscosity is discussed to the customary types which are the constant, the linear function and the exponential function. Each coefficient of the eddy viscosities which sensitively affect the precision of solutions is uniquely decided from the additional boundary condition which the velocity becomes zero at the wave trough level. Also the boundary conditions at the bottom and the continuity relation are used in the integration of the governing equation. The theoretical solutions of present model are compared with the various experimental results. The solutions show a good agreement with the experimental results in the case of constant or exponential function type eddy viscosity.

  • PDF

Numerical analysis on thermal-fluidic characteristics of the magnetic fluid in a cavity using GSMAC (GSMAC법을 이용한 밀폐된 정방형관내 자성유체의 열-유동 특성에 관한 해석적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.997-1002
    • /
    • 2013
  • The article is aiming to investigate the thermal-fluidic characteristics of magnetic fluid in a cavity using GSMAC (generalized-simplified marker and cell method). The transport equations of the magnetic fluid are including the continuity equation, momentum equation and energy equation for natural convection and Maxwell equation and magnetization equation of magnetite nano-sized particles motion. In addition, the heat transfer characteristics such as temperatures and Nusselt numbers and flow characteristics such as streamlines and isotherms of the magnetic fluid were analyzed with the intensity and direction of the magnetic fields. As a result, the thermal-fluidic characteristics of the magnetic fluid in a cavity were could be controlled by the intensity and direction of the magnetic fields.