• 제목/요약/키워드: content algebras

검색결과 2건 처리시간 0.015초

THE OHM-RUSH CONTENT FUNCTION III: COMPLETION, GLOBALIZATION, AND POWER-CONTENT ALGEBRAS

  • Epstein, Neil;Shapiro, Jay
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1311-1325
    • /
    • 2021
  • One says that a ring homomorphism R → S is Ohm-Rush if extension commutes with arbitrary intersection of ideals, or equivalently if for any element f ∈ S, there is a unique smallest ideal of R whose extension to S contains f, called the content of f. For Noetherian local rings, we analyze whether the completion map is Ohm-Rush. We show that the answer is typically 'yes' in dimension one, but 'no' in higher dimension, and in any case it coincides with the content map having good algebraic properties. We then analyze the question of when the Ohm-Rush property globalizes in faithfully flat modules and algebras over a 1-dimensional Noetherian domain, culminating both in a positive result and a counterexample. Finally, we introduce a notion that we show is strictly between the Ohm-Rush property and the weak content algebra property.

HYERS-ULAM-RASSIAS STABILITY OF ISOMORPHISMS IN C*-ALGEBRAS

  • Park, Choonkil
    • 충청수학회지
    • /
    • 제19권2호
    • /
    • pp.159-175
    • /
    • 2006
  • This paper is a survey on the Hyers-Ulam-Rassias stability of the Jensen functional equation in $C^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Its content is divided into the following sections: 1. Introduction and preliminaries. 2. Approximate isomorphisms in $C^*$-algebras. 3. Approximate isomorphisms in Lie $C^*$-algebras. 4. Approximate isomorphisms in $JC^*$-algebras. 5. Stability of derivations on a $C^*$-algebra. 6. Stability of derivations on a Lie $C^*$-algebra. 7. Stability of derivations on a $JC^*$-algebra.

  • PDF