• Title/Summary/Keyword: contamination potential

Search Result 535, Processing Time 0.028 seconds

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (오염지반 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Yoo, Dong-Ju;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.330-337
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for delineation of subsurface contamination in situ, and then be supplemented with a minimum confirmatory sampling and laboratory testing program. While the resistivity measurement have potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements for delineating the subsurface contamination. This study is focused on verifying the applicability of resistivity and capacitance measurements on CPT module to provide information on contaminated subsurface by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination.

  • PDF

Monitoring of fecal contamination in a partly restored urban stream in Seoul, Korea

  • Seo, Eun-Young;Jung, Dawoon;Yong, Seung-Cheon;Park, Rho Young;Lee, Young-Ok;Ahn, Tae-Seok
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.211-218
    • /
    • 2016
  • Cheonggye-cheon is a partly restored urban stream located in central Seoul. We monitored fecal contamination using three different fecal indicators, total coliforms (TC), fecal coliforms (FC) and E. coli, to assess differences in each indicator on days of varying weather conditions. Presumptive TC, FC and E. coli colonies were identified by their 16S rRNA sequences. The results showed that enumeration of E. coli provided a better reflection of fecal contamination of the stream than TC and FC. The main sources of contamination were the inflow of fecal-polluted groundwater from the vicinity of a subway line and two inflowing streams. The fecal contamination was worsened on days with heavy rain because untreated sewage from a collecting facility flowed into the stream. Moreover, growth potential of fecal indicator (E. coli) in situ induced by algal exudates was measured. Our results suggest that an appropriate standard based on E. coli rather than TC and FC should be established for improving water quality management strategies of Cheonggye-cheon in the future.

Contamination Levels of Pharmaceuticals and Pesticides in the Gotjawal Regions of Jeju Island and Associated Ecotoxicities (곶자왈 지역의 의약물질과 농약의 오염수준과 생태독성영향)

  • Kang, Ha Byeong;Koh, Su Rim;Choi, Yoonsong;Lee, Sangwoo;Kho, YoungLim;Oh, Dalyoung;Choi, Kyungho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.426-437
    • /
    • 2013
  • Objective: Gotjawal refers to a special geographical designation found in Jeju Province, Korea, where vegetation forms over a rocky area. Due to the important ecological value of Gotjawal, international concern about such areas is growing. However, only limited information is available regarding environmental contamination of Gotjawal. This study was conducted in order to investigate the levels of contamination and associated ecotoxicological effects of surface water bodies in Gotjawal. Methods: Surface water samples were collected at three sampling sites in two Gotjawal areas and were analyzed for several pharmaceuticals and pesticides in consideration of the potential sources of contamination. The ecotoxicity of the samples was measured using water fleas (Daphnia magna and Moina macrocopa) and zebrafish (Danio rerio). In addition, effects on the gene transcription of zebrafish were investigated following exposure to the samples. Results: Nine pharmaceuticals were detected in the samples, but none of the target pesticides were detected. Following acute exposure to two surface water samples, the survival of waterfleas was significantly reduced, but reproduction was not affected. In zebrafish, time-to-hatch was delayed and fry survival was decreased in some samples. On the other hand, at the transcriptional level, there were no genes significantly influenced by exposure to the samples. Conclusion: This is the first study investigating environmental contamination in Gotjawal areas and associated ecotoxicities. Further studies are warranted to identify the cause of acute Daphnia toxicity and to determine potential consequences of longer-term exposure in Gotjawal areas.

Monitoring Technique and Device of Surface Contamination for Line-Post Insulator (지지애자의 표면오염 모니터링 기술 및 장치)

  • Kil, Gyung-Suk;Park, Dae-Won;Jung, Kwang-Seok;Kim, Sun-Jae;Seo, Dong-Hoan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.413-417
    • /
    • 2010
  • Line to ground faults by deterioration of insulators has frequently occurred in power system, and the main cause is surface contamination of the insulators. The contamination of insulator is analyzed by monitoring the surface leakage current flowing them. The suspension insulator is monitored by installation of a zero-phase current sensor(ZCT), but the line-post insulator is impossible to apply the same method because of its large diameter structure. This paper proposed a detection method of surface leakage current for a line-post insulator, and it can easily be applied to new and/or built insulators. The leakage current is indirectly calculated from the potential difference between the metal electrode attached on the surface of insulator and the ground connector. To evaluate the performance of the proposed method, the leakage current is compared as a function of contamination condition controlled by the density of NaCl solution. The leakage current is proportioned to the density of NaCl solution, and the voltage detected by the electrode showed the same trend. From the experimental results, we designed and fabricated a monitoring device which is composed of a detection electrode, signal converter, microprocessor, and ZigBee, and its measurement range is $10{\mu}A{\sim}5mA$.

Persistent Organic Pollution and Arsenic Contamination in Asia Pacific Water: Case Study of Emerging Environmental Problems in Vietnam

  • Pham, Viet.H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.79-89
    • /
    • 2007
  • This paper provides a comprehensive overview of the present status of several environmental problems caused by emerging toxic substances such as persistent organic pollutants (POPs), endocrine disrupting chemicals (EDCs), and arsenic in various environmental media in Vietnam. Monitoring data reported during the 1990s demonstrated elevated contamination of DDTs in most of these compartments in Vietnam. Studies in frame of the Asia-Pacific Mussel Watch Program revealed that fish, mussels and resident birds from Vietnam contained higher concentrations of DDTs as compared to other countries in region, suggesting the role of Vietnamese environment as a significant emission source of DDT in the Southeast Asian region. The estimated dietary intakes of PCBs and DDTs for Vietnamese were relatively high among Asian developing countries, suggesting potential risk for humans posed by thesechemicals. Widespread contamination of some endocrine active compounds such as alkylphenols and phthalates was observed at various sites along the coasts of northern and middle Vietnam. The presence of significant source of bisphenol-A along Red River estuary was revealed with the concentrations comparable to those reported for developed nations. A case study on seasonal variation of alkylphenols and phthalates in surface water of river delta and estuary of north and middle Vietnam indicated the differences in distribution of these compounds between dry and rainy seasons. Higher concentrations of alkylphenols and phthalates were found in dry season in estuary; while the contrasting pattern was observed in the river delta, showing elevated residues in rainy season. This result suggests the different behavior of alkylphenols and phthalates in river delta and coastal environment. From ecotoxicological perspectives, concentrations of bis-phenol A and di(2-ethylhexyl)phthalates [DEHP] in surface water from some locations in Vietnam exceeded the guideline values for Ecotoxicological Effects and the Environmental Risk Limit, respectively, suggesting potential for toxic implications on aquatic wildlife. Widespread and elevated arsenic contamination was discovered inour recent surveys in groundwater in a large area of suburban areas of Hanoi city, the capital of Vietnam. The most recent investigation in 4 villages showed about more than 50 % of groundwater samples contained As concentrations exceeding 50 g/L (the WHO and Vietnamese standard). In particular, in Son Dong villages, 58 % of samples analyzed contained As concentrations higher than 200 g/L. Good correlations were found in As concentrations in water and hair and urine of peoples in corresponding families, suggesting the chronic exposure to As by people living in As-contaminated ground water areas. In Son Dong village, As levels in hair (mean: 1.7 mg/kg dry wt) and urine (g/g creatinine) exceeding the reference values recommended by WHO, suggesting potential for human risk posed by long term accumulation of As in human body. Future studies should be focused on the time trends of POPs and EDCs in biota in Vietnam in order to predict future trend of contamination and to reveal new clues for understanding possible toxic impacts on aquatic organisms. The issues of arsenic contamination in groundwater and their chronic toxic implications on human health should be systematically investigated in the future.

  • PDF

Analysis of Microbial Contamination in Poultry Slaughtering Operations for the Application of HACCP (HACCP 적용을 위한 도계처리 공정내 미생물 오염의 분석)

  • 홍종해;권혁무;고주언
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 1996
  • The application of HACCP system, which was adopted by Codex Alimentarius Committee for the safe meat and poultry production, is one of the urgent task for competing in the world trade markets. But there have been no useful analytical studies to identify the causes of contamination in the poultry meat processing plants in Korea. This study was conducted to investigate the potential hazards during the operations by the microbiological examination for the poultry meat processing plant (20,000 birds capacity a day) located in Kangwon province. In spite of air contamination of work places, it may not directly affect the surface contamination of poultry meats. But the risk of Campylobacter jejuni/coli contamination was high. The number of total count was decreased about ten times, but remarkable changes of microbial contamination could not be recognized in each procedure during the operations. The washing water was already contaminated as much as $10^{3-6}CFU/ml$ in SPC before the operations. It means that to keep water tanks hygienic is a primary step to prevent the occurrences of microbial contamination. The overflow and recirculation of water in scalding, washing, and chilling was aslo an important factor for a hygienic control. Based on this study, the followings could be regarded as an important factors for hygenic control in the poultry slaughtering plants on a small scale. The temperature of water used for scalding should be constantly maintained on a required temperature, and the overflow rate of 1~1.5 liter per bird. The carcass surface and the body cavity should be washed thoroughly and the cross-contamination due to facilities, workers, and tools should be prevented. The chilling water sholud be maintained under 5$\circ$C of temperature with ice and overflow, and residual chlorine level of 50 ppm.

  • PDF

Study on the simulation of emission characteristics and sources contribution of 4-nitrophenol in the Geumho River (금호강 유역에서의 4-nitrophenol 배출 특성과 오염원 기여도 모의 연구)

  • Park, Kyeong-Deok;Yang, Duk-Seok;Lee, In-Jung;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • In the Geumho River, 4-nitrophenol has been detected, thus it is necessary to investigate the contamination sources in order to prevent the release of this compound. However, the research to estimate the potential source is regarded as complicated research. In this study, the distributions of 4-nitrophenol were simulated and the contribution of the potential sources was estimated using a numerical model(HydroGeoSphere; HGS) and the measuring data of 4-nitrophenol from 2013 to 2017. The altitude data, the land cover data, the flow rates of the tributaries and wastewater treatment plants, and the decay rate of 4-nitrophenol was used as the input data. The results of this research showed that the contribution rates of potential contamination sources in the upstream area were higher than that of the downstream area. Most of the upstream area is the agricultural area, it seemed that 4-nitrophenol was originated from the pesticides. In order to achieve more specific location of sources, an intensive investigation in the upstream is required.

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

Monte Carlo Simulation for Electron Contamination of Photon Beam (치료용 광자선의 전자오염에 대한 몬테카를로 시뮬레이션)

  • Chung, Kap-Soo;Ko, Shin-Kwan;Yang, Han-Joon;Han, Chang-Yul
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.47-51
    • /
    • 1999
  • We calculated the energy distribution and the percentage depth-dose at 10 cm in a $10{\times}10\;cm^2$ with a photon beam at SSD of 100 cm by using a Monte Carlo Simulation. PDD is used as a beam-quality specifier for radiotherapy beams. It is better than the commonly used values of TPR or nominal accelerating potential. The presence of electron contamination affects the measurement of PDD, but can be removed by the use of a 0.1 cm lead filter. It reduces surface dose from contaminant electrons from the accelerator by more than 90% for radiotherapy beams. The filter performs best when it is placed immediately below the head. An electron-contamination correction factor is introduced to correct for electron contamination from the filter and air. It converts PDD which includes the electron contamination with the filter in place into PDD for the photons in the filtered beam. The correction factor can be used to determine stopping-power ratio. Calculations show that the values of water-to-air slopping power ratio in the unfiltered beam are related to PDD.

  • PDF

Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches (통계적 분석 방법을 이용한 국가지하수수질측정망의 오염 등급 정량화 및 평가)

  • Yoon, Hee-Sung;Bae, Gwang-Ok;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.22-32
    • /
    • 2012
  • This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.