• 제목/요약/키워드: contact model

검색결과 2,570건 처리시간 0.027초

센서 동역학을 고려한 충돌체간의 충격응답 (Impact Responses of Two Colliding Bodies Considering Sensor Dynamics)

  • 류봉조;안길영;권병희;송오섭;이종원
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.394-401
    • /
    • 2004
  • This paper presents a study on the analysis of impact responses taking into account sensor dynamics. The contact force between impacting bodies is modelled by using Hertz force-displacement law and linear damping function. Since the real impact force and acceleration at the contact surface of two colliding bodies are measured indirectly by the sensors, the measured outputs can be a little different from the real impact responses. Therefore, in this study, the importance of consideration of sensor dynamics in the impact problems of two colliding bodies is emphasized. In order to verify the appropriateness of the proposed contact force model, the drop type impact test using two kinds of sensors is carried out. Through the numerical analysis and experiment, the effect of sensor dynamics and characteristics on the contact force model is investigated.

레일의 상하방향 불규칙성에 의한 차륜과 레일의 동 접촉력 (Dynamic Wheel/Rail Contact Force due to Rail Irregularities)

  • 이현엽
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.616-622
    • /
    • 1998
  • An analytical method has been developed to estimate the dynamic contact force between wheel and rail when trains are running on rail with vertical irregularities. In this method, the effect of Hertzian deformation at the contact point is considered as a linearized spring and the wheel is considered as an sprung mass. The rail is modelled as a discretely-supported Timoshenko beam, and the periodic structure theory was adopted to obtain the driving-point receptance. As an example, the dynamic contact force for a typical wheel/rail system was analysed by the method developed in this research and the dynamic characteristics of the system was also discussed. It is revealed that discretely-supported Timoshenko beam model should be used instead of the previously used continuously-supported model or discretelysupported Euler beam model, for the frequency range above several hundred hertz.

  • PDF

고속 철도 차량용 판토그래프와 가선계의 접촉력 예측을 위한 수치 해석 모델 개발 (Development of Numerical Analysis Model to Estimate the Contact Force between the Pantograph and Catenary of a High-speed Train)

  • 정성필;박태원;김영국;백진성
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.461-467
    • /
    • 2011
  • This study aims to create a numerical analysis model which can investigate the dynamic interaction between pantograph and overhead contact wire used for a high-speed railway vehicle, and validate the simulation results according to EN 50318 standard. Finite element analysis models of pantograph and overhead contact line are created using SAMCEF, a commercial FE analysis program. The mean, standard deviation, maximum and minimum values of contact forces are obtained. The simulation results are validated according to EN 50318, and the possibility of simulating the collecting characteristic of an actual pantograph system by using the developed model is discussed.

접합식 도어시일의 온도를 고려한 접촉거동에 관한 수치적 연구 (A Numerical Study on the Contact Behavior Analysis with Thermal and New Design of Bonded Door Seal)

  • 김청균;김한구
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.335-340
    • /
    • 2003
  • This paper presents contact behavior of a perfluoroelastomer bonded door seal by a non-linear finite element method using the mechanical and thermal analysis. The shape effects are investigated for sealing performance of bonded door seal. Also maximum stress, temperature distribution and contact force are investigated. A bonded door seal was modeled three shape. The highest contact force occurs at model III(sunflower shape). The maximum stress of model III is lower than that of the others. The calculated FEM results show that the model III has excellent performance compared with other seal models.

  • PDF

분사칼럼식 직접접촉열교환기의 열전달특성에 관한 수치적 연구 (A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger)

  • 강용혁;김남진;김종보
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.735-744
    • /
    • 2000
  • In order to define the heat transfer characteristics in a spray column direct contact heat exchanger, the development of a multidimensional numerical model and computational algorithm is essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. In the present study, it has been carried out numerical calculations using a two-dimensional model for operation of a direct contact heat exchanger. Such operational and system parameters as the injection velocity, void fraction, aspect ratio and injection temperature of each fluid are examined thoroughly to assess their influence on the performance of a spray column. Analyzed results has shown that our two-dimensional model predicts the heat transfer phenomena well in a spray column.

  • PDF

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.989-998
    • /
    • 2023
  • Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.

Asymmetric Light curves of Contact and Near-Contact Binaries

  • ;강영운
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.143.1-143.1
    • /
    • 2012
  • We attempt to investigate the main reason of the asymmetrical light curves of contact and near-contact eclipsing binary base on the hypothesis that cool spot was produced on late type star while hot spot was produced from transferred material from their companion star hitting surface. We select 7 eclipsing binary systems which showed asymmetric light curves and mass transfer. Period variation and mass transfer rate were obtained from O-C diagram. Radial velocity curves and light curves of those 7 eclipsing binary system were adopted from available literature in order to obtain the absolute dimension. For four contact eclipsing binary system (AD Phe, EZ Hya, AG Vir and VW Boo), their component stars belonged to spectral type G to K was fitted by cool spot model. While the other two near-contact systems (RT Scl and V1010 Oph) and one contact system (SV Cen) was fitted by cool spot model. The densities of the materials are adopted from stellar model which calculate by stellar structure code. The calculated spot temperature turns out to agree with the photometric solution but there are no correlate between period variation rate and type of spot.

  • PDF

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Optimal area for rectangular isolated footings considering that contact surface works partially to compression

  • Vela-Moreno, Victor Bonifacio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Martinez-Aguilar, Carmela
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.561-573
    • /
    • 2022
  • This paper presents a new model to obtain the minimum area of the contact surface for rectangular isolated footings, considering that the contact surface works partially to compression (a part of the contact surface of the footing is subjected to compression and the other is not in compression or tension). The methodology is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My". This document presents the simplified and precise equations of the four possible cases of footing subjected to uniaxial bending and five possible cases of footing subjected to biaxial bending. The current model considers the contact area of the footing that works totally in compression, and other models consider the contact area that works partially under compression and these are developed by very complex iterative processes. Numerical examples are presented to obtain the minimum area of rectangular footings under an axial load and moments in two directions, and the results are compared with those of other authors. The results show that the new model presents smaller areas than the other authors presented.

외부광 차단을 위한 설진기 안면접촉부 설계 (Structural Design of Facial Contact Parts in Computerized Tongue Diagnosis System to Block Out External Light)

  • 김지혜;남동현
    • 대한한의진단학회지
    • /
    • 제17권3호
    • /
    • pp.225-232
    • /
    • 2013
  • Objectives The aim of this study is to design a part in contact with the face of computerized tongue diagnosis system (CTDS), so that external light is effectively shielded even if the facial appearance and degree of protrusion differ when a patient opens or closes his/her jaws. Methods Each of the 4 researchers manually produced clay models of the part in contact with the face of CTDS. Shielding and contact feeling of the clay models were evaluated by 20 assessors. Based on the evaluation, we selected the appropriate model and produced the final silicon model. Then we evaluated the performance of the shielding of the completed silicon model. We took tongue pictures of 60 participants with a CTDS applying the silicon model in condition with external light and without it. The color values in RGB color model and gray scale of the tongue pictures in condition with external light were compared with those without external light. Results There was no significant difference between the color values of the picture taken in condition with external light and those without external light. Conclusions We concluded that the produced part in contact with the face of CTDS can effectively block out the external light.