• 제목/요약/키워드: contact amount

검색결과 778건 처리시간 0.025초

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

초기 잔류응력과 접촉표면 제거가 접촉피로수명에 미치는 영향 (Effect of Metal Removal and Initial Residual Stress on Contact Fatigue Life)

  • 허현무;구병춘;최재붕;김영진;서정원
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.341-349
    • /
    • 2005
  • Damage often occurs on the surface of railway wheel by wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue life by the metal removal of the contact surface were shown by many researchers, but it has not explained precisely why fatigue life increases or decreases. In this study, the effect of metal removal depth on the contact fatigue life for railway wheel has been evaluated by applying finite element analysis. It has been revealed that the residual stress and the plastic flow are the main factors determining the fatigue life. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. It has been found that the initial residual stress determines the amount of metal removal depth. Also, the effects of the initial residual stress and metal removal on the contact fatigue lift has been estimated, and an equation is proposed to decide the optimal metal removal depth for maximizing the contact fatigue life.

마모해석을 위한 고유치해석과 Adaptive Meshing 알고리듬을 이용한 수치해석 비교 (A Comparative Study on Eigen-Wear Analysis and Numerical Analysis using Algorithm for Adaptive Meshing)

  • 장일광;장용훈
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.262-266
    • /
    • 2020
  • Herein, we present a numerical investigation of wear analysis of sliding systems with a constant speed subjected to Archard's wear law. For this investigation, we compared two methods: eigen-wear analysis and adaptive meshing technique. The eigen-wear analysis is advantageous to predict the evolution of contact pressure due to wear using the initial contact pressure and contact stiffness. The adaptive meshing technique in finite element analysis is employed to obtain transient wear behavior, which needs significant computational resources. From the eigen-wear analysis, we can determine the appropriate element size required for finite element analysis and the time increment required for wear evolution by a dimensionless variable above a certain value. Since the prediction of wear depends on the maximum contact pressure, the finite element model should have a reasonable representation of the maximum contact pressure. The maximum contact pressure and wear amount according to this dimensionless variable shows that the number of fine meshes in the contact area contributes more to the accuracy of the wear analysis, and the time increment is less sensitive when the number of contact nodes is significantly larger. The results derived from a two-dimensional wear model can be applied to a three-dimensional wear model.

눈물양에 따른 토릭 소프트콘택트렌즈의 축 회전양 변화 (Change in Axial Rotation of Toric Soft Contact Lens according to Tear Volume)

  • 서우현;김소라;박미정
    • 한국안광학회지
    • /
    • 제20권4호
    • /
    • pp.445-454
    • /
    • 2015
  • 목적: 본 연구에서는 착용자의 눈물양이 토릭 소프트콘택트렌즈 착용시간 및 응시방향에 따른 축회전 변화에 미치는 영향을 알아보고자 하였다. 방법: 이중쐐기형 축안정화 디자인을 가진 토릭 소프트콘택트렌즈를 62안(정상안 29안, 건성안 33안)에 착용시키고 착용 15분 후 및 6시간 후의 비침입성 눈물막파괴시간 변화와 응시방향을 달리하였을 때의 회전방향과 회전양 변화를 측정하였다. 결과: 토릭 소프트콘택트렌즈를 착용하고 응시방향을 달리하였을 때 대체로 귀 쪽으로 회전하는 경우가 많았으나 착용시간 및 착용안의 눈물양에 따라 차이가 있었다. 또한, 렌즈 착용 15분 후와 6시간 후 모두 거의 모든 응시방향에서 건성안의 경우가 정상안에 비해 귀 쪽으로 회전하는 빈도가 더 높았다. 렌즈 착용 15분 후에는 건성안군의 회전양이 전체적으로 컸으나 6시간 후에는 정상안군과 건성안군 간의 회전양 차이는 크지 않았다. 결론: 본 연구에서는 렌즈 착용자의 눈물양에 따라 토릭 소프트콘택트렌즈의 축 회전이 달라지며, 착용 초기와 일정시간 착용 후의 회전 양상이 상이함을 밝혔다. 본 연구결과를 통한 토릭 소프트콘택트렌즈 회전양상 변화는 착용 시간 경과 후의 시력 변화 가능성을 의미하며 눈물양과의 상관관계 규명은 토릭 소프트콘택트렌즈 선택시 적절한 고려요인이 필요함을 제안한다.

내측연결 임플란트 시스템에서 고정체와 지대주 연결부의 적합에 관한 연구 (FIT OF FIXTURE/ABUTMENT INTERFACE OF INTERNAL CONNECTION IMPLANT SYSTEM)

  • 이흥태;정재헌
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.192-209
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combination or internal connection type. Material and methods: In this study, each two randomly selected internal implant fixtures from ITI, 3i, Avana, Bicon, Friadent, Astra, and Paragon system were used. Each abutment was connected to the implant with 32Ncm torque value using a digital torque controller or tapping. All samples were cross-sectioned with grinder-polisher unit (Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc). Then optical microscopic and scanning electron microscopic(SEM) evaluations of the implant-abutment interfaces were conducted to assess quality of fit between the mating components. Results : 1) Generally, the geometry of the internal connection system provided for a precision fit of the implant/abutment into interface. 2) The most precision fit of the implant/abutment interface was provided in the case of Bicon System which has not screw. 3) The fit of the implant/abutment interface was usually good in the case of ITI, 3I and Avana system and the amount of fit of the implant/abutment interface was similar to each other. 4) The fit of the implant/abutment interface was usually good in the case of Friadent, Astra and Paragon system. The case of Astra system with the inclined contacting surface had the most Intimate contact among them. 5) Amount of intimate contact in the abutment screw thread to the mating fixture was larger in assembly with two-piece type which is separated screw from abutment such as Friadent, Astra and Paragon system than in that with one-piece type which is not seperated screw from abutment such as ITI, 3I and Avana system. 6) Amount of contact in the screw and the screw seat of abutment was larger in assembly of Friadent system than in asembly of Astra system of Paragon system. Conclusion: Although a little variation in machining accuracy and consistency was noted in the samples, important features of all internal connection systems were the deep, internal implant-abutment connections which provides intimate contact with the implant walls to resist micro-movement, resulting in a strong stable interface. From the results of this study, further research of the stress distribution according to the design of internal connection system will be required.

접촉각 측정 원리를 이용한 새로운 사이즈도 측정기 (제1보) -자동 접촉각 측정 원리의 개발 - (Development of a Novel System for Measuring Sizing Degree Based on Contact Angle(I) - Development of a Novel Principle for Automatic Measurement of Contact Angle -)

  • 이찬용;김철환;최경민;박종열;권오철
    • 펄프종이기술
    • /
    • 제35권3호
    • /
    • pp.43-52
    • /
    • 2003
  • The new principle to measure a sizing degree by a contact angle was developed using an automatic determination of the 3-end point coordinates of the water droplet on a sheet, which could diminish the operator's bias during measurement. A constant amount of water was first placed on a sample sheet by a water dispenser, and then an image of the liquid droplet was captured by a digital camera and then transmitted to a computer. The program measuring for contact angle extracted a liquid contour by Gaussian function combined with a 8-direction chain code. The Euclidean equation was applied to the binary image of the liquid contour in order to measure the diameter of the contour. Finally, the contact angle of the liquid was calculated by using the diameter and the top coordinates. In addition, a surface free energy of the sample sheet and an elapsed time taken up to the complete absorption into the sheet were simultaneously measured with the contact angle.

계수기용 비인벌류트 치형의 내치차 설계와 물림해석 (Design and Meshing Analysis of a Non-involute Internal Gear for Counters)

  • 이성철
    • Tribology and Lubricants
    • /
    • 제30권4호
    • /
    • pp.212-217
    • /
    • 2014
  • A counter gear transmits the rotation angle, so the angular velocity ratio of the gear does not necessarily need to be constant in the meshing process. As a pinion has a small number of teeth when combined with an internal gear for counters, tooth interference can occur with the use of an involute curve. This paper introduces circular arcs that represent a tooth profile and fillet for the profile design of a pinion through the combination of arcs with lines. The straight line of a rack tooth represents the profile of a mating internal gear. Thus, the circular arc and line maintain contact during the rotation of the counter gear. This paper presents an analysis of the meshing of the circular arc tooth and rack tooth along with the properties of the counter gear, such as the change in rotational velocity and amount of backlash. The contact ratio of the counter gear is 1 because the tooth contact occurs between circular arcs and line. The initial position of tooth contact, which denotes the simultaneous contact of two teeth, is found. As the rotation of the pinion, only one tooth keeps the contact situation. This meshing property is analyzed by the geometrical constraints of the tooth profile in contact and the results are presented as graphical diagrams in which tooth-arc movements are superimposed.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

하악의 비틀림회전운동에 영향을 미치는 요인 (Factor Affecting Mandibular Rotational Troque Movements)

  • 이유미;한경수;허문일
    • Journal of Oral Medicine and Pain
    • /
    • 제23권2호
    • /
    • pp.143-155
    • /
    • 1998
  • This study was performed to investigate the factor that might affect mandibualr body rotation. For the study, 115 patients with temporomandibular disorders and 35 dental students without angy signs and symptoms of temporomandibular disorders were randomly selected as the patient group and the contreol group, respectively. Preferred chewing side, Angle' classification, lateral guidance pattern, and affected side were clinically recorded, and the amount of Mandibular body rotational torque movement was measured in wide opening and closure, in right and left excursion with vertical and lateral distance in frontal plane, right and left rotational angel in horizontal and in frontal plane. Masticatory muscle activity of anteriorocclusal contact pattern on maximal hard biting were also observed synchronously with BioEMG and T-Scan , respectively. The observed items were muscle activity of anterior temporalis and superficial masseter, and tooth contact status related to contact number, force, duration, and occlusal unbalance between right and left arch. The data collected were analyzed by SAS statistical program. The results of this study were as follows : 1. Mean value of vertical distance in frontal plane in wide opening and closure was more in control subjects than in patients, but there was no difference for rotational angle. In right excursion, rotational angles were greater in patient group than in control group. 2. Comparison among the subjects by preferred chewing side did not reveal any significant difference, but comparison among patients by affected side showed more rotational amount in bilaterally affected patients than in unilaterally affected patients. 3. Comparison among the subjects by Angle's classification or lateral guidance pattern revealed no difference. There was also no difference between preferred chewing side and contralateral side, and between affected side and contralateral side. 4. Positive correlation in madibular rotational torque movements were observed among vertical distance, total horizontal rotation angle, electromyographic activity of anterior temporalis, tooth contact number, and tooth contact force but total frontal rotation angle almost did not show any correlation with other variables except vertical distance.

  • PDF

접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류 (Terrain Feature Extraction and Classification using Contact Sensor Data)

  • 박병곤;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제7권3호
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.