• Title/Summary/Keyword: construction risk

Search Result 1,887, Processing Time 0.025 seconds

A Study on the Optimization Effectiveness of Risk Assessment in Construction Industry (건설업 위험성 평가 실효성을 위한 최적화 연구)

  • Paek, Chung Hyeun;Cho, Ur Ryong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.15-22
    • /
    • 2015
  • The risk assessment carried out on the construction site at the beginning of the implementation depends on the subjective judgment of risk of general contractor and subcontractors, whose opinion about frequency and intensity of risk is different. In this paper, research the awareness of general contractors and subcontractors about process of risk assessment at the construction site and its effectiveness. Researching of the main factors "frequency", "intensity" which determines the degree of risk gives the opportunity to find an option for improving the effective implementation of risk assessment.

A Risk Management Method Using Fuzzy Theory for Early Construction Stage (퍼지이론을 이용한 초기 건설공사의 리스크 관리 방법)

  • Hwang Ji-Sun;Lee Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.136-143
    • /
    • 2004
  • This study presents a risk management methodology using fuzzy theory for early construction stage and is focused on risk identification and risk analysis. This study identifies various risk factors associated with activities clearly construction stage, then establishes the Risk Breakdown Structure(RBS) by classifying the risks into the three groups; Common risks, risks for Earth works, and risks for Foundation works. The risk analysis method presented in this study is based on the RBS that has two levels such as upper level and lower level. The risk exposure of lower level risk factors is assessed by fuzzy inference. The weight of risks is estimated by fuzzy measure. Then, the estimated risk exposures and weights are aggregated to assess the risk exposure of upper level risks by Choquet fuzzy integral. The risk exposure of upper level risks determine the priority of risk factors in view of risk management. This study performs case study to validate the proposed method. The result of case study shows that the methodology suggested in this thesis would be utilized well in evaluating risk exposure.

The research and correspondence of schedule risk management at the pre-construction phase of curtain-wall (커튼월 공사의 착공 전 단계에서 공정 리스크 규명 및 대응방안)

  • Jung Tae-Sik;Kim chang-duk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.71-79
    • /
    • 2005
  • As construction projects have been extremely enormous, complex and special, risk factors have been increased consistently. Therefore, it is very important to identify and cope with the uncertain risk factors in such building constructions for successful project accomplishment. The purpose of this research is to approach practical affairs directly and show detail alternatives of risk factors by extracting the risk factors throughout construction process of curtain wall that is largely influenced on cost, quality, schedule ,safety and following activity. Also, extracting these risk factors make it possible to analyze quantitative risk and decide the priority raking of risk factors. Especially, this research is aimed to provide efficient management of scheduling risk that can make the risk minimize to practical workers who have different degree of knowledge and experience to the construction cite when the risk brings out suddenly.

Exploring Critical Risk Factors of Office Building Projects

  • NGUYEN, Phong Thanh;PHAM, Cuong Phu;PHAN, Phuong Thanh;VU, Ngoc Bich;DUONG, My Tien Ha;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.309-315
    • /
    • 2021
  • Risks and uncertainty are unavoidable problems in management of projects. Therefore, project managers should not only prevent risks, but also have to respond and manage them. Risk management has become a critical interest subject in the construction industry for both practitioners and researchers. This paper presents critical risk factors of office building projects in the construction phase in Ho Chi Minh City, Vietnam. Data was collected through a questionnaire survey based on the likelihood and consequence level of risk factors. These factors fell into five groups: (i) financial risk factors; (ii) management risk factors; (iii) schedule risk factors; (iv) construction risk factors; and (v) environment risk factors. The research results showed that critical factors affecting office building projects are natural (i.e., prolonged rain, storms, climate effects) and human-made issues (i.e., soil instability, safety behaviors, owner's design change) and the schedule-related risk factors contributed to the most significant risks for office buildings projects in the construction phase in Ho Chi Minh City. They give construction management and project management practitioners a new perspective on risks and risk management of office buildings projects in Ho Chi Minh City and are proactive in the awareness, response, and management of risk factors comprehensively.

A Basic Study on the Model Development of Quantitative Risk Assessment for Small and Medium-sized Construction Sites. (중소형 건설사업장의 위험 정량화 모델 개발을 위한 기초 연구)

  • Lee, Ji-yeob;Bat, Bagana;Son, Kiyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.206-207
    • /
    • 2022
  • Currently, safety accidents in construction area are managed regardless of the size. Therefore, the objective of this study is to conduct for developing the quantitative risk assessment according to large and small and medium-sized construction sites. The scope of this study is limited to the fall accidents which is the biggest accidents in the construction sites. the regression analysis was conducted based on the collected data. As a result, it was confirmed that there was a statistically significant difference between larce and small and medium-sized construction sites. This study is expected to be used as basic data for research on the development of a risk quantitative model for small and medium-sized construction sites in the future.

  • PDF

Safety Management Information System in Construction Work;Focus on Tunnel Work (건설공사의 안전관리정보시스템 개발;터널공사 중심으로)

  • Park, Jong-Keun;paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.72-78
    • /
    • 2008
  • In any form of construction work, it is essential that accidents be prevented at every stage from foundation preparation to build completion. For this, it is necessary to use models that can assess risk and provide instruction for safe work processes so that the risk of accidents is reduced. Currently, however, very few models can perform these tasks. In this paper, we presents a model that assesses risk quantitatively by analyzing risk factors involved in stage of construction such as foundation work, erection work, structural work, equipment work, finishing work and etc work. The model performs assessment based on examples of accidents and by investing actual conditions during construction. In addition, we presents in this paper a safety management system was developed to assess risk during construction and to effectively train laborers.

Concept Selection of NPP Construction Delay Risk Assessment Methodology Using Systems Engineering Approach

  • Hossen, Muhammed Mufazzal;Kang, Sunkoo;Jung, JC;Kim, Jonghyun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.9-24
    • /
    • 2015
  • Construction industry faces a lot of inherent uncertainties and issues and the construction phase of nuclear power project is not free from this risk. This paper investigates promising methodologies to be used on nuclear power plant (NPP) construction schedule delay risk assessment by using entry level systems engineering approach. This study contains how the initial concept for the risk assessment methodology has been developed. In this point of view, this work structured on three main phases: needs analysis (NA), concept exploration (CE), and concept definition (CD) through systems engineering (SE) approach. Traditionally, the SE process is applied to technical development programs but this study opens up a new avenue that SE can also be successfully applied to the development and optimization of the risk assessment model. This study provides a rational and systematic process for developing and selecting the best risk assessment model. This paper selects analytic hierarchy process (AHP) method to assess NPP construction schedule delay risk for international project. As conclusion, the proposed concept and selected method can discriminate successfully and clearly among schedule delay risk assessment methods.

The Time Management Model focused on the Risk Management (위험관리 중심의 공정관리모텔)

  • Chu, Hae-Keum;Shin, Hyeng-John;Kim, Seon-Gyoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.6 s.28
    • /
    • pp.81-89
    • /
    • 2005
  • Construction projects are characterized that exposed high risks so feel strongly necessity of actively risk management that manage the time of project. but recent generally time management tools are not satisfied sufficient supporting the risk identify and risk analysis. Therefore this study purposed development the time management model that in order to improve existing problem of time management model in construction project and developed model could perform practical risk management in construction field. The new time management model focused on the risk management will be able to conduct critical path management and risk critical path management simultaneously.

Risk Assessment of Agricultural Construction Works using Accident Analysis and Analytic Hierarchy Process (재해분석을 통한 농업토목공사의 공종별 위험성 평가)

  • Yang, Young Jin;Oh, Sue Hoon;Noh, Jae Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.15-25
    • /
    • 2018
  • The accident risk at the construction workplace associated with agricultural engineering is comparatively higher than those of other fields due mainly to its complex work types and processes. Agricultural engineering deals with a variety of agricultural infrastructures from irrigation and drainage facilities to giant-scale coastal reclamation land infrastructures. The characteristics that most agricultural projects have conducted on a small-scale even worsen the situation drawing low attentions to risk management. Therefore, systematical risk assessment that focuses on details of agricultural construction work process is required in order to enhance safety management capacity and to prevent repetitive accidents ultimately. This study aims to categorize construction work types and processes of agricultural construction works, and to quantitatively assess the accident risk of them based on accident analysis. Regarding classification of construction works, actual 827 accident cases were thoroughly reviewed and coded by their construction site, facility and work type, project scale and so on. Most accidents (71.8 % of total cases) occurred in small-scale construction workplaces with less than 5 billion Korean won project budget. And those accidents related to agricultural infrastructure project (37.4%) and agricultural water development project (22.4%). In terms of work types, accidents frequently took place in form-work followed by pipe installation work, steel bar work and concrete work. The potential risks were compared with actual outbreak of accidents based on Analytic Hierarchy Process (AHP). The results show that the potential conditions of accident expected to be took place is somewhat different from the actual conditions where accidents actually happened. This implicates that risk management manuals or education needs to be adjusted by reflecting unexpected circumstances. Overall, this study is meaningful in that the results could be foundations as to strengthen risk management capacity for agricultural engineering projects.

Risk Assessment of Mechanical Parking Facility during Construction based on AHP Analysis (AHP 분석을 이용한 기계식 주차설비 건설 중 위험성 평가방안 연구)

  • Lee, Jeong Han;Kim, Yong Gon;Lee, Jae Won;Kim, Jong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.33-41
    • /
    • 2022
  • As the number of automobile registrations increases yearly, parking spaces that are located in downtown areas are increasing, and mechanical parking facilities are also increasing. Therefore, there is a high risk of accidents when installing and repairing a mechanical parking facility. In the preceding six years (from 2012 to 2018), the statistics that pertain to accidental disasters indicated that a total of 137 disaster victims were generated by the construction sector, 33 accidents occurred, and 10 people died. However, only the safety management items pertaining to accidents that occur during maintenance work and the use of the installed mechanical parking facilities are being studied; furthermore, there is no ongoing research with respect to the risk management that is conducted at the construction site. In 2017, the Korea Occupational Safety and Health Agency (KOSHA) announced the "Guidelines for Safe Installation and Maintenance of Mechanical Parking Equipment"; however, it is a safety guideline that is limited to the installation of basic protective equipment and to facility installation. There is no model for mechanical parking facilities that is indicated in the "Risk Assessment Model by Construction Industry Type", which is issued by the Safety and Health Corporation and is widely utilized for risk assessment in the construction industry; moreover, elevator installation work CODE N0: 22 is the only major example of a disaster. In this study, "risk assessment through a focus group interview" was performed, and data was derived from the "risk assessment of Article 41 (2) of the Industrial Safety and Health Act", which reflects the characteristics of the construction industry based on AHP analysis. The results of this study can be utilized for the risk assessment that is conducted during the construction stage of mechanical parking facilities.