• Title/Summary/Keyword: construction quantities

Search Result 213, Processing Time 0.026 seconds

A Study on Cost Standards for Securing Appropriate Construction Costs for Small-Scale Construction Sites (소규모 시공현장 적정공사비 확보를 위한 원가기준 마련 연구)

  • Oh, Jae-Hoon;An, Bang-Yul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.347-348
    • /
    • 2023
  • In construction sites, small-scale construction quantities or limited work hours below the daily work volume may occur due to on-site conditions. For small-scale quantities, the input of equipment and labor is designed based on an hourly basis in the invoice, resulting in a difference from the actual cost. In this study, we aim to explore solutions from the perspective of construction cost standards to secure appropriate construction costs for small-scale and time-limited construction sites. Firstly, to preserve the basic construction costs on-site, we established standards where half the cost would be charged for construction quantities below four hours and a full day's cost would be designed for construction quantities between four to eight hours. Additionally, realistic construction cost calculation standards are expected to be provided by realizing a surcharge rate for work hour limitations to secure appropriate construction costs.

  • PDF

Comparison of Labor Inputs from Standard Quantities per Unit and Actual Quantities in Apartment Reinforced Concrete Work (공동주택 골조공사의 표준품셈 노무량과 실투입 노무량 비교)

  • Jeon, Sang-Hoon;Koo, Kyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.182-189
    • /
    • 2008
  • In private and public construction works, cost estimation and site productivity management are based on designed labor quantities calculated by the Standard Quantities per Unit (SQU). The designed labor quantities are regarded as the basis for insurance costs and safety and environmental costs and also affect the progress measurement of construction works. Even though the designed labor quantities from the SQU has been considered to be different from actual labor quantities put to construction works, there is no research that empirically analyzes the statistical differences. This study analyzes actual labor quantities of form workers, steel-bar fabricators, concrete pourers in reinforced concrete works of the 43 apartment projects, and compares the actual labor quantities to labor quantities from the SQU. It goes further to scrutinize the critical reasons underlying the differences through a survey on 65 practitioners and interviews with 32 site managers and supervisors. The regression models of labor quantities of the apartment concrete work produced by the present study will contribute to reasonable construction contracts based on the past actual costs and practical site management by the actual labor quantities.

Advancing an Automated Algorithm for Estimating Rebar Quantities in Columns

  • Rachmawati, Titi Sari Nurul;Widjaja, Daniel Darma;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.497-508
    • /
    • 2023
  • Manual estimation of rebar quantities by contractors often yields discrepancies between projected and actual amounts used in the construction phase, leading to cost inaccuracies and potential logistical challenges. To address these issues, there is a clear need for a method that allows precise estimation of rebar quantities during the design phase. Such a method would enhance contractor competitiveness during project bids, promote accurate cost calculations, and avert superfluous rebar purchases on-site. Given that columns are the primary structural components in reinforced concrete(RC) buildings and necessitate considerable amounts of rebar, this study focuses on creating an automated algorithm for estimating column rebar quantities. An analysis of the accurate quantities obtained via the study and those derived from manual estimation reveals a discrepancy of 0.346 tons or 2.056%. This comparison affirms the proposed algorithm's efficacy in eliminating errors from overestimation or underestimation of rebar quantities. The practical implications of this study are significant for construction companies as it fosters efficient and precise estimation of rebar quantities, ensuring compliance with related specifications and governing regulations.

A Case Study on Improvement for Optimal Organization of Work Items in Construction Bill of Quantities (건축공사 내역서 세부항목 구성에 대한 사례연구)

  • Noh, Hae-Ra;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.67-68
    • /
    • 2016
  • In construction management, BoQ(Bill of Quantities) has been commonly used for the cost estimation. However, many problems have been recognized about the work items used in the BoQ that could be varied by the experience and knowledge of the estimators or the project. Also, there are lots of work items that have to be written in BoQ even though the cost proportion of those items is relatively lower than the others. In this study we consider the way how to organize optimally the work items through the analysis of case. The results of this study could be useful for improving the efficiency of preparing construction BoQ and conducting Quantity take-off in our construction management practices.

  • PDF

Development of an Algorithm for the Automatic Quantity Estimation of Wall Rebar

  • Kim, Do-Yeong;Suh, Sangwook;Kim, Sunkuk;Lwun Poe Khant
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.83-94
    • /
    • 2023
  • In order to devise a rebar usage optimization algorithm, it is necessary to calculate the exact rebar length and revise the arrangement of rebars into special lengths. However, the process of rearranging numerous rebars and manually calculating their quantities is time-consuming and requires significant human resources. To address this challenge, it is necessary to develop an algorithm that can automatically estimate the length of rebars and calculate their quantities. This study aims to create an automatic estimation algorithm that improves work efficiency while ensuring accurate and reliable calculations of rebar quantities. The algorithm considers various factors such as concrete cover, hook length, development length, and lapping length, mandated by the building codes, to calculate the quantity of rebars for wall structures. The effectiveness of the proposed method is validated by comparing the rebar quantities generated by the algorithm with manually calculated quantities, resulting in a difference rate of 1.14% for the hook case and 1.37% for the U-bar case. The implementation of this method enables fast and precise estimation of rebar quantities, adhering to relevant regulatory codes.

A Development of Unified and Consistent BIM Database for Integrated Use of BIM-based Quantities, Process, and Construction Costs in Civil Engineering

  • Lee, Jae-Hong;Lee, Sung-Woo;Kim, Tae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • In this study, we have developed a calculation system for BIM-based quantities, 4D process, and 5D construction costs, by integrating object shape attributes and the standard classification system which consist of Cost Breakdown System(CBS), Object Breakdown System(OBS) and Work Breakdown System(WBS) in order to use for the 4 dimensional process control of roads and rivers. First, a new BIM library database connected with the BIM library shape objects was built according to the CBS/OBS/WBS standard classification system of the civil engineering field, and a integrated database system of BIM-based quantities, process(4D), and construction costs(5D) for roads and rivers was constructed. Nextly, the process classification system and the cost classification system were automatically disassembled to the BIM objects consisting of the Revit-family style elements. Finally, we added functions for automatically generating four dimensional activities and generating a automatic cost statement according to the combination of WBS and CBS classification system The ultimate goal of this study was to extend the integrated quantities, process(4D), and construction costs(5D) system for new roads and rivers, enabling the integrated use of process(4D) and construction costs(5D) in the design and construction stage, based on the tasks described above.

Estimation Model for Approximate Construction Quantities of Suspension Bridge in Early Stage (사업기획단계에서의 현수교의 물량추정을 위한 모델연구)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • Bridge construction cost estimates have generally been conducted by using historial unit-price(per meter or square meter). The traditional estimating method based on unit-price references can never completely reflect the specialty of cable supported bridge. In this paper, we have developed the system for supporting the approximate construction cost and the quantity estimation based on 3D model information in the pre-project planning phase of 3-span continuous suspension bridge with 2-pylons. First of all, we'd analyzed the design information (such as structural design report, blueprint and quantity) and the real cost data from the existing suspension bridges and derived the design variables of the bridges. We developed the BIM wizard that generates a suspension bridge model parametrically based on derived design variables. The principle material quantities of suspension bridge are calculated directly from 3-dimensional bridge model built by using the BIM wizard. We have established the system that the construction cost can be estimated more specific than the traditional estimating method.

Estimation Method of Waste Amount from Materials to Develop Generation Rates of Construction Waste in New Apartment Construction Sites: Focused on Bill of Quantities for Architectural Works (신축아파트 현장의 건설폐기물 발생원단위 개발을 위한 자재별 폐기물 수량 예측 방법: 건축공사 내역서의 투입 물량을 중심으로)

  • Jung, Jong-Suk;Song, Sang-Hoon;Park, Seong-Sik;Lee, Seok-Je
    • Land and Housing Review
    • /
    • v.5 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • The amount of new apartment construction has been trending upward in 3~4% each year since 11% increase in 2002. Currently, in public apartment construction sites under separate delivery system for construction waste processing, the significant difference between estimated quantity for contract and actual amount frequently causes severe controversy among project participants. Many factors such as poor environmental management, inadequate contractual amount are assumed to influence the above problem, and the requirement to revise existing generation rates, the key criteria applied in estimating the quantities of waste, is increasing. Most of generation rates were established in early 2000's, and have difficulty in reflecting the changes from new materials and technologies accordingly. Therefore, this study aims to clarify the types of construction waste for each trade and the forecast method as preliminary work in order to develop more accurate generation rates for construction waste in new construction. To achieve this purpose, the architectural bills of quantities in ten apartment projects executed during 2010~2013 were collected, and the possible waste types and reasonable material loss ratio for each item from temporary works to owner-supplying material area were defined and compared through the workshops and interviews with the experts and on-site environmental managers. The results of this study will contribute to establishing the categories of construction waste for construction trades and proper generation rates by the indirect estimation method in new apartment construction in the follow-up study.

Decision Making Model for Optimal Earthwork Allocation Planning (최적 토량배분 계획을 위한 의사결정 모델)

  • Gwak, Han-Seong;Seo, Byoung-Wook;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.162-163
    • /
    • 2016
  • This paper presents a mathematical model for optimizing earthwork allocation plan that minimizes earthwork cost. The model takes into account operational constraints in the real-world earthwork such as material-type (i.e., quality level of material) and quantities excavated from cut-sections, required quality of material and quantities for each embankment layer, top-down cutting and bottom-up filling constraints, and allocation orders. These constraints are successfully handled by assuming the rock-earth material as the three dimensional (3D) blocks. The study is of value to project scheduler because the model identifies the optimal earth allocation plan (i.e., haul direction (cut and fill pairs), quantities of soil, type of material, and order of allocations) expeditiously and is developed as an automated system for usability. It is also relevant to estimator in that it computes more realistic earthworks costs estimation. The economic impact and validity of the mathematical model was confirmed by performing test cases.

  • PDF

An Accuracy Analysis on Quantity Take-off Using BIM-based Spatial Object (BIM 기반의 공간객체를 이용한 물량산출 정확성 분석)

  • Cha, You-Na;Kim, Seong-Ah;Chin, Sang-Yoon
    • Journal of KIBIM
    • /
    • v.4 no.4
    • /
    • pp.13-23
    • /
    • 2014
  • After being introduced, Building Information Modeling (BIM) has been actively applied to the cost estimation of construction projects, and various studies on BIM based quantity take-off have been carried out. In practice, however, these calculations take considerable time, because BIM based quantity take-off is further conducted along with 2D-based quantity take-off. Studies on the quantity take-off using BIM spatial objects have been carried out on early stages of projects, but how this method differs from the existing quantity take-off method and how accurate it is in comparison have rarely been verified. Therefore, by comparing 2D based quantities with quantities through BIM spatial objects, this study analyzed the accuracy of quantity take-off using BIM spatial objects. To this end, the properties of BIM spatial objects and quantity calculable spatial types were analyzed, and existing 2D-based quantities and quantities extracted from BIM spatial objects were compared through a case study. As a result, the quantity of spatial objects found to be more by about 7.13% in 0.05% and therefore, this difference should be considered during quantity take-off using BIM spatial objects. Through the results of this study, we can improve the accuracy of quantity take-off using BIM spatial objects in the early stage of a construction project.