• Title/Summary/Keyword: constrained input

Search Result 146, Processing Time 0.023 seconds

Visual Landmark based Parking Assistance System in Constrained Environment (제한된 환경에서 시각적 랜드마크를 기반으로 한 주차 보조 시스템)

  • Park, Soon-Young;Song, Young-Sub;Kim, Hang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • This paper proposes a visual landmark, and presents a parking assistance system using the landmarks. The visual landmark is a feature corresponding to the parking slots, it must be selected considering the parking lot's environment. The parking lot has simple repetitive pattern environment without noticeable features. The previous landmarks are not proper to the parking lot's environment. We propose the visual landmark for this environment. We estimate the vehicle's location using the proposed landmarks, and expect the vehicle's trajectory according to the vehicle's state. The system's inputs are images from the camera fixed to the vehicle. The presented system estimates the vehicle's location using the input images, and assists a driver through displaying the expected vehicle's trajectory from the steering angle. The experimental results showed the proposed landmark's performance and the parking assistance system's performance.

Face detection using fuzzy color classifier and convex-hull (Fuzzy Color Classifier 와 Convex-hull을 사용한 얼굴 검출)

  • Park, Min-Sik;Park, Chang-U;Kim, Won-Ha;Park, Min-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.69-78
    • /
    • 2002
  • This paper addresses a method to automatically detect out a person's face from a given image that consists of a hair and face view of the person and a complex background scene. Out method involves an effective detection algorithm that exploits the spatial distribution characteristics of human skin color via an adaptive fuzzy color classifier (AFCC), The universal skin-color map is derived on the chrominance component of human skin color in Cb, Cr and their corresponding luminance. The desired fuzzy system is applied to decide the skin color regions and those that are not. We use RGB model for extracting the hair color regions because the hair regions often show low brightness and chromaticity estimation of low brightness color is not stable. After some preprocessing, we apply convex-hull to each region. Consequent face detection is made from the relationship between a face's convex-hull and a head's convex-hull. The algorithm using the convex-hull shows better performance than the algorithm using pattern method. The performance of the proposed algorithm is shown by experiment. Experimental results show that the proposed algorithm successfully and efficiently detects the faces without constrained input conditions in color images.

Application of Recent Approximate Dynamic Programming Methods for Navigation Problems (주행문제를 위한 최신 근사적 동적계획법의 적용)

  • Min, Dae-Hong;Jung, Keun-Woo;Kwon, Ki-Young;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.737-742
    • /
    • 2011
  • Navigation problems include the task of determining the control input under various constraints for systems such as mobile robots subject to uncertain disturbance. Such tasks can be modeled as constrained stochastic control problems. In order to solve these control problems, one may try to utilize the dynamic programming(DP) methods which rely on the concept of optimal value function. However, in most real-world problems, this trial would give us many difficulties; for examples, the exact system model may not be known; the computation of the optimal control policy may be impossible; and/or a huge amount of computing resource may be in need. As a strategy to overcome the difficulties of DP, one can utilize ADP(approximate dynamic programming) methods, which find suboptimal control policies resorting to approximate value functions. In this paper, we apply recently proposed ADP methods to a class of navigation problems having complex constraints, and observe the resultant performance characteristics.

A Study for searching optimized combination of Spent light water reactor fuel to reuse as heavy water reactor fuel by using evolutionary algorithm (진화 알고리즘을 이용한 경수로 폐연료의 중수로 재사용을 위한 최적 조합 탐색에 관한 연구)

  • 안종일;정경숙;정태충
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1997
  • These papers propose an evolutionary algorithm for re-using output of waste fuel of light water reactor system in nuclear power plants. Evolutionary algorithm is useful for optimization of the large space problem. The wastes contain several re-useable elements, and they should be carefully selected and blended to satisfy requirements as input material to the heavy water nuclear reactor system. This problem belongs to a NP-hard like the 0/1 Knapsack problem. Two evolutionary strategies are used as a, pp.oximation algorithms in the highly constrained combinatorial optimization problem. One is the traditional strategy, using random operator with evaluation function, and the other is heuristic based search that uses the vector operator reducing between goal and current status. We also show the method, which performs the feasible teat and solution evaluation by using the vectorized data in problem. Finally, We compare the simulation results of using random operator and vector operator for such combinatorial optimization problems.

  • PDF

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Selection of the Optimal Location of Traffic Counting Points for the OD Travel Demand Estimation (기종점 수요추정을 위한 교통량 관측지점의 적정위치 선정)

  • 이승재;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.53-63
    • /
    • 2003
  • The Origin-Destination(OD) matrix is very important in describing transport movements in a region. The OD matrix can be estimated using traffic counts on links in the transport network and other available information. This information on the travel is often contained in a target OD matrix and traffic counts in links. To estimate an OD matrix from traffic counts, they are the major input data which obviously affects the accuracy of the OD matrix estimated, Generally, the quality of an estimated OD matrix depends much on the reliability of the input data, and the number and locations of traffic counting points in the network. Any Process regarding the traffic counts such as the amount and their location has to be carefully studied. The objective of this study is to select of the optimal location of traffic counting points for the OD matrix estimation. The model was tested in nationwide network. The network consists of 224 zones, 3,125 nodes and 6,725 links except to inner city road links. The OD matrix applied for selection of traffic counting points was estimated to 3-constrained entropy maximizing model. The results of this study follow that : the selected alternative to the best optimal counting points of six alternatives is the alternative using common links of OD matrix and vehicle-km and traffic density(13.0% of 6,725 links), however the worst alternative is alternative of all available traffic counting points(44.9% of 6,725 links) in the network. Finally, it should be concluded that the accuracy of reproduced OD matrix using traffic counts related much to the number of traffic counting points and locations.

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

Base-metal Mineralization in the Cretaceous Gyeongsang Basin and Its Genetic Implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong Metallogenic Provinces (한국 경상분지 백악기 비철금속 광화작용과 그 성인적 의의: 함안-군북-고성(-창원) 및 의성 광상구를 중심으로)

  • 이상렬;최선규;소칠섭;유인창;위수민;허철호
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The Cretaceous magmatism in the Gyeongsang Basin, Korea, led to the formation of two contrasting metallogenic provinces: the Haman-Gunbug-Goseong(-Changwon) (HGGC) and the Euiseong (EU). The mineralization in the HGGC metallogenic province represents copper, gold and iron of porphyry-related deposits that display close relationships in time and space with subvolcanic granitoids. Much of copper-gold-forming events in this province are consistently constrained to the period between ca. 89 and 81 Ma. The hydrothermal systems of copper-gold vein deposits in the HGGC province are associated with ore-forming fluids of high to intermediate temperature (300∼50$0^{\circ}C$) with high salinity (20∼55 equiv. wt. % NaCl). The ore-forming fluids become progressively more diluted by the incorporation of decreased quantities of magmatic water further from the nearby intrusion, suggesting significant input and fluid mixing of a meteoric water component to the magmatic fluids during the late stage of geothermal systems. In contrast, the EU metallogenic province is characterized by polymetallic vein deposits that are consistently constrained to a period of 78∼60 Ma. The geothermal systems of polymetallic vein deposits in the EU province are derived from a narrow range of intermediate temperature (200∼40$0^{\circ}C$) with relatively low salinity(1∼7 equiv. wt.% NaCl). It may represent a mixed fluid of magmatic and meteoric waters. The base-metal mineralization in the Gyeongsang Basin shows a close spatial and temporal distinction between the proximal environment derived from shallow-level granitoids in the southwestern HGGC province and the distal condition derived from volcanic environments in the northwestern EU province.