• Title/Summary/Keyword: consortium

Search Result 743, Processing Time 0.023 seconds

Induction of Systemic Resistance against Bacterial Leaf Streak Disease and Growth Promotion in Rice Plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8

  • Hata, Erneeza Mohd;Yusof, Mohd Termizi;Zulperi, Dzarifah
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 µmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.

The safety, immunological benefits, and efficacy of ginseng in organ transplantation

  • Lim, Sun Woo;Luo, Kang;Quan, Yi;Cui, Sheng;Shin, Yoo Jin;Ko, Eun Jeong;Chung, Byung Ha;Yang, Chul Woo
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.399-404
    • /
    • 2020
  • Korean ginseng (Panax ginseng) is associated with a variety of therapeutic effects, including antioxidative, anti-inflammatory, vasorelaxative, antiallergic, antidiabetic, and anticancer effects. Accordingly, the use of ginseng has reached an all-time high among members of the general public. However, the safety and efficacy of ginseng in transplant recipients receiving immunosuppressant drugs have still not been elucidated. Transplantation is the most challenging and complex of surgical procedures and may require causation for the use of ginseng. In this regard, we have previously examined the safety, immunological benefits, and protective mechanisms of ginseng with respect to calcineurin inhibitor-based immunosuppression, which is the most widely used regimen in organ transplantation. Using an experimental model of calcineurin inhibitor-induced organ injury, we found that ginseng does not affect drug levels in the peripheral blood and tissue, favorably regulates immune response, and protects against calcineurin inhibitor-induced nephrotoxicity and pancreatic islet injury. On the basis of our experimental studies and a review of the related literature, we propose that ginseng may provide benefits in organ transplant recipients administered calcineurin inhibitors. Through the present review, we aimed to briefly discuss our current understanding of the therapeutic benefits of ginseng related to transplant patient survival.

Development of the Microbial Consortium for the Environmental Friendly Agriculture by the Antagonistic Rhizobacteria (다기능 PGPR 균주들의 기작별 상호보완형 컨소시엄 구성을 통한 고추역병 방제 및 고추생장촉진)

  • Lim, Jong-Hui;Jung, Hee-Young;Kim, Sang-Dal
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.116-120
    • /
    • 2009
  • We found out the new method of the consortium for the environmental friendly agriculture by 8 kinds of the selected antagonistic rhizobacteria. This research involved composition of mutual complementary consortium by each antagonistic function such as production of antibiotic, siderophore, antifungal cellulase and insoluble phosphate solubilization. The consortium No.11 among composed consortium candidates showed the most pepper growth promoting activity and Phytophthora blight suppression on the in vivo pot test of red-pepper plant. The consortium No. 11 is combination of PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. B. subtilis AH18 and B. licheniformis K11 both could produce the auxin, antifungal ${\beta}$-glucannase and siderophore. Also, they had mechanism for solubilization of insoluble phosphate. But, B. licheniformis K11 could produce the antibiotic of iturin which was able to inhibit Phytophthora capsici. We confirmed complementary noncompetitive mutualism between B. subtilis AH18 and B. licheniformis K11 of the consortium No.11. The results came out through treatment of two strains co-culture, treatment of individual culture and co-treatment of two individual cultures for the growth and Phytophthora blight suppression of red-pepper. The treatment of two strains co-culture didn't show a synergic effect in comparing sole treatment on the pepper growth promotion and Phytophthora blight suppression. But, when the pots were treated simultaneously with co-treatment of two individual cultures, an synergic effect was seen in the growth promotion of roots, stem, leaves and suppressed Phytophthora blight on red-pepper in vivo pot test.

Improving Microalgal Biomass Productivity and Preventing Biofouling in Floating Marine Photobioreactors via Sulfonation of Selectively Permeable Membranes (부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상)

  • Kim, Kwangmin;Lee, Yunwoo;Kim, Z-Hun;Park, Hanwool;Jung, Injae;Park, Jaehoon;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • The purpose of this study was to inhibit biofouling on a selectively permeable membrane (SPM) and increase biomass productivity in marine photobioreactors (PBRs) for microalgal cultivation by chemical treatment. Surfaces of a SPM, composed of polyethylene terephthalate (PET), was sulfonated to decrease hydrophobicity through attaching negatively charged sulfonic groups. Reaction time of sulfonation was varied from 0 min to 60 min. As the reaction time increased, the water contact angle value of SPM surface was decreased from $75.5^{\circ}$ to $44.5^{\circ}$, indicating decrease of surface hydrophobicity. Furthermore, the water permeability of sulfonated SPM was increased from $5.42mL/m^2/s$ to $10.58mL/m^2/s$, which reflects higher nutrients transfer rates through the membranes, due to decreased hydrophobicity. When cultivating Tetraselmis sp. using 100-mL floating PBRs with sulfonated SPMs, biomass productivity was improved by 34% compared with the control group (non-reacted SPMs). In addition, scanning electron microscopic observation of SPMs used for cultivation clearly revealed lower degree of cell attachment on the sulfonated SPMs. These results suggest that sulfornation of a PET SPM could improve microalgal biomass productivity by increasing nutrients transfer rates and inhibiting biofouling by algal cells.

A Study on Constructing Regional Consortium for the Region Culture Education in Schools (학교 지역문화교육을 위한 지역협의체 구성에 관한 연구)

  • Kim, Young-Soon;Lim, Ji-Hye;Bae, Hyeon-Ju
    • Korean Journal of Culture and Arts Education Studies
    • /
    • v.6 no.2
    • /
    • pp.37-62
    • /
    • 2011
  • The aim of this study was to search conditions activating the regional consortium for regional culture education in schools. Results of this study are follows: the regional consortium consists of parents of students, communities, schools, school boards, public institutes, and NGO groups. The consortium contribute the educational support and development for student activities in schools. Furthermore the consortium make an offer to coordinate and facilitate the delivery of information, resources, and services to students, educators, employers, and the community. Therefore, the consortium might be best described as "matchmakers" that help ensure that our customers are able to easily connect with providers of the services they need. The consortium will be made up of a network of service providers from across its region that all collaborate in helping to connect the local education and school communities.

Immobilization of Nitrifier Consortium for the Removal of Ammonium Ion in the Recirculating Aquaculture System (양어장수내의 암모니아성 질소제거를 위한 질화세균군의 고정화)

  • KIM Sung-Koo;SEO Jae-Koan;LEE Jong-Seok;KONG In-Soo;SUH Keun-Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.816-822
    • /
    • 1997
  • The immobilization of a microorganism has been rapidly progressed with the development of biotechnology in recent years. Although it has been used as a tool to isolate products from biological media in various areas, it has not yet been practiced in the treatment of waste water. In this paper, we suggest a possibility to apply the immobilization technique In the recirculating aquaculture system. We examined the ability of $NH_4^+$ removal by nitrifier consortium immobilized in $Ba^{++}-alginate$, k-carrageenan and agar bead at the concentration of 50 g/L, respectively. In order to use the immobilized nitrifier consortium as media in the fludized bed reactor, the strength of bead was measured. $Ba^{++}-alginate$ as a support material showed higher strength of bead. Also, the nitrifier consortium immobilized in $Ba^{++}-alginate$ showed higher nitrification activity that could remove 20 mg/L ammonium ion than those immobilized in other two support materials, carrageenan and agar. The immobilized nitrifier consortium showed better nitrification activity than free nitrifier consortium.

  • PDF

Seeking Alternative Models and Research Trends for Big Deals in the Electronic Journal Consortium (전자저널 빅딜 계약의 연구 동향과 대안 탐색)

  • Kim, Sang-Jun;Kim, Jeong-Hwan
    • Journal of Information Management
    • /
    • v.42 no.1
    • /
    • pp.85-111
    • /
    • 2011
  • The purpose of this study was to seek a workable alternative to replace a big deal related to the journal budget for the maintenance of academic libraries with the largest issue on the E-journal consortium. The contents of this study was to present it. It had examined the current situation, strengths, weaknesses and corresponding to replace the big deal contract. After reviewing the literature, we looked into the alternative activities for the big deal such as open access-based, usage-based, consortium improvement-based, publishers lead, and other models. As a result, the 'consortium cost reapportion model' was an alternative for the KESLI. The alternative was in the short term for cost division format, but long-term oriented for a consortium single(bloc) payment type or national licence model. The model was based on the data from the last year. It had evaluated download the PDF and HTML documents, but the three times weighting more than others, and the rest of 14 factors of 0.5 to 5 out of 100 total score. The total amount negotiated by national units 10, 20 and 30 grades for the final step was allocated to the participating library on the KESLI consortium.

Operation Status and Needs Analysis for the Improvement of KESLI Consortium (KESLI 컨소시엄 활성화를 위한 운영현황 및 요구분석)

  • Lee, Yong-Gu;Park, Sungjae;Kim, Jeonghwan
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.221-236
    • /
    • 2013
  • The purpose of this study is to improve the KESLI consortium by analyzing the status of participant organizations and their needs. A survey questionnaire including questions on consortium selection, management, and evaluation was distributed. The findings from the 179 responses indicate that the needs of the participants include issues related to the collection development policy, the cataloging of e-journals, user education, and evaluation. Therefore, KESLI should provide the following: (1) examples of collection development policy used for reference, (2) system development for e-journal cataloging, (3) materials and program guidelines for user education, and (4) education related to evaluation techniques for e-journal usages.

Biological Control and Plant-Growth Promotion by Bacillus Strains from Milk

  • Nautiyal Chandra Shekhar;Mehta Sangeeta;Singh Harikesh Bahadur
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.184-192
    • /
    • 2006
  • Six-hundred bacterial strains from human milk and milk from Sahiwal cows, Holstein Friesian cows, and buffaloes were screened for their ability to suppress phytopathogenic fungi under in vitro conditions. A consortium of 3 strains, viz., Bacillus lentimorbus B-30486 (B-30486), B. subtilis B-30487 (B-30487), and B. lentimorbus B-30488 (B-30488), isolated from Sahiwal cow milk resulted in better biological control and plant-growth promotion than single-strain treatments. For commercial-scale production of a bioinoculant, the solid-state fermentation of sugarcane agro-industrial residues, i.e., molasses, press mud, and spent wash, using the consortium of B-30486, B-30487, and B-30488, resulted in a value-added product, useful for enhancing plant growth. The application of the consortium to sugarcane fields infested with Fusarium moniliforme and Colletotrichum falcatum resulted in a reduction of mortality and significantly higher (P=0.05) plant height, number of tillers, and cane girth when compared with the control. Furthermore, under field conditions, the treatment of sugarcane with the consortium resulted in significantly (P=0.05) greater plant growth compared with nonbacterized plants. Accordingly, this is the first report on the effective use of bacteria isolated from milk for biological control and enhancing plant growth under field conditions. Furthormore, a solid-state fermentation technology was developed that facilitates the economic utilization of agro-industrial residues for environmental conservation and improving plant and soil health.