• Title/Summary/Keyword: conserved sequence

Search Result 646, Processing Time 0.031 seconds

Characterization of a Squalene Synthase from the Thraustochytrid Microalga Aurantiochytrium sp. KRS101

  • Hong, Won-Kyung;Heo, Sun-Yeon;Park, Hye-Mi;Kim, Chul Ho;Sohn, Jung-Hoon;Kondo, Akihiko;Seo, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.759-765
    • /
    • 2013
  • The gene encoding squalene synthase (SQS) of the lipid-producing heterotrophic microalga Aurantiochytrium sp. KRS101 was cloned and characterized. The krsSQS gene is 1,551 bp in length and has two exons and one intron. The open reading frame of the gene is 1,164 bp in length, yielding a polypeptide of 387 predicted amino acid residues with a molecular mass of 42.7 kDa. The deduced krsSQS sequence shares at least four conserved regions known to be required for SQS enzymatic activity in other species. The protein, tagged with $His_6$, was expressed into soluble form in Escherichia coli. The purified protein catalyzed the conversion of farnesyl diphosphate to squalene in the presence of NADPH and $Mg^{2+}$. This is the first report on the characterization of an SQS from a Thraustochytrid microalga.

The Expression Pattern of Melatonin Receptor 1a Gene during Early Life Stages in the Nile tilapia (Oreochromis niloticus)

  • Jin, Ye Hwa;Park, Jin Woo;Kim, Jung-Hyun;Kwon, Joon Yeong
    • Development and Reproduction
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • The action of melatonin within the body of animals is known to be mediated by melatonin receptors. Three different types of melatonin receptors have been identified so far in fish. However, which of these are specifically involved in puberty onset is not known in fish. We cloned and analyzed the sequence of melatonin receptor 1a (mel 1a) gene in Nile tilapia Oreochromis niloticus. In addition, we examined the tissue distribution of gene expressions for three types of receptors, mel 1a, 1b and lc and investigated which of them is involved in the onset of puberty by comparing their expression with that of gonadotropin-releasing hormone receptor I (GnRHr I) gene using quantitative real-time PCR from 1 week post hatch (wph) to 24 wph. The mel 1a gene of Nile tilapia consisted of two exons and one bulky intron between them. Mel 1a gene was found to be highly conserved gene showing high homology with the corresponding genes from different teleost. All three types of melatonin receptor genes were expressed in the brain, eyes and ovary in common. Expression of mel 1a gene was the most abundant and ubiquitous among 3 receptors in the brain, liver, gill, ovary, muscle, eye, heart, intestine, spleen and kidney. Mel 1b and mel 1c genes were, however, expressed in fewer tissues at low level. During the development post hatch, expressions of both mel 1a and GnRHr I genes significantly increased at 13 wph which was close to the putative timing of puberty onset in this species. These results suggest that among three types of receptors mel 1a is most likely associated with the action of melatonin in the onset of puberty in Nile tilapia.

Identification and characterization of S-RNase genes in apple rootstock and the diversity of S-RNases in Malus species

  • Kim, Hoy-Taek;Moriya, Shigeki;Okada, Kazuma;Abe, Kazuyuki;Park, Jong-In;Yamamoto, Toshiya;Nou, Ill-Sup
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • We isolated and confirmed two S-RNases, denoted as mpS1 and mpS2, from apple rootstock 'Marubakaido' (Malus prunifolia Borkh. Var. ringo Asami). These S-RNases contained and conserved five cysteine residues and two histidine residues, which are essential for RNase activity. The mpS1 showed high similarity to S5 (99.1%) of Malus spectabilis, whereas the mpS2 showed 99.5% nucleotide sequence similarity to S26 of (Malus ${\times}$ domestica) and 99.6% to S35 of (Malus sieversii) when compared with reported S-RNases. In amino acid sequences, the mpS1-RNase was almost similar to the S5-RNase of Malus spectabilis, and the mpS2-RNase was similar to the S35 of Malus sieversii, with only one bp being different from the S26-RNase of Malus ${\times}$ domestica. The 57 S-RNases of Malus species were renamed and rearranged containing the new S-RNases, as mprpS35 (mpS2) and mprpS57 (mpS1), for determining S-genotypes and identifying new alleles from apple species (Malus spp.).

Principal Component Analysis and Molecular Characterization of Reniform Nematode Populations in Alabama

  • Nyaku, Seloame T.;Kantety, Ramesh V.;Cebert, Ernst;Lawrence, Kathy S.;Honger, Joseph O.;Sharma, Govind C.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.123-135
    • /
    • 2016
  • U.S. cotton production is suffering from the yield loss caused by the reniform nematode (RN), Rotylenchulus reniformis. Management of this devastating pest is of utmost importance because, no upland cotton cultivar exhibits adequate resistance to RN. Nine populations of RN from distinct regions in Alabama and one population from Mississippi were studied and thirteen morphometric features were measured on 20 male and 20 female nematodes from each population. Highly correlated variables (positive) in female and male RN morphometric parameters were observed for body length (L) and distance of vulva from the lip region (V) (r = 0.7) and tail length (TL) and c' (r = 0.8), respectively. The first and second principal components for the female and male populations showed distinct clustering into three groups. These results show pattern of sub-groups within the RN populations in Alabama. A one-way ANOVA on female and male RN populations showed significant differences ($p{\leq}0.05$) among the variables. Multiple sequence alignment (MSA) of 18S rRNA sequences (421) showed lengths of 653 bp. Sites within the aligned sequences were conserved (53%), parsimony-informative (17%), singletons (28%), and indels (2%), respectively. Neighbor-Joining analysis showed intra and inter-nematodal variations within the populations as clone sequences from different nematodes irrespective of the sex of nematode isolate clustered together. Morphologically, the three groups (I, II and III) could not be distinctly associated with the molecular data from the 18S rRNA sequences. The three groups may be identified as being non-geographically contiguous.

Expression of BrD1, a Plant Defensin from Brassica rapa, Confers Resistance against Brown Planthopper (Nilaparvata lugens) in Transgenic Rices

  • Choi, Man-Soo;Kim, Yul-Ho;Park, Hyang-Mi;Seo, Bo-Yoon;Jung, Jin-Kyo;Kim, Sun-Tae;Kim, Min-Chul;Shin, Dong-Bum;Yun, Hong-Tai;Choi, Im-Soo;Kim, Chung-Kon;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

  • Islam, Md. Zaherul;Yun, Hae Keun
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.347-356
    • /
    • 2016
  • Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), Vf-CXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, Vf-CXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines.

Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR

  • Choi, Hoseong;Cho, Won Kyong;Yu, Jisuk;Lee, Jong-Seung;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • To detect five plant viruses (Beet black scorch virus, Beet necrotic yellow vein virus, Eggplant mottled dwarf virus, Pelargonium zonate spot virus, and Rice yellow mottle virus) for quarantine purposes, we designed 15 RT-PCR primer sets. Primer design was based on the nucleotide sequence of the coat protein gene, which is highly conserved within species. All but one primer set successfully amplified the targets, and gradient PCRs indicated that the optimal temperature for the 14 useful primer sets was $51.9^{\circ}C$. Some primer sets worked well regardless of annealing temperature while others required a very specific annealing temperature. A primer specificity test using plant total RNAs and cDNAs of other plant virus-infected samples demonstrated that the designed primer sets were highly specific and generated reproducible results. The newly developed RT-PCR primer sets would be useful for quarantine inspections aimed at preventing the entry of exotic plant viruses into Korea.

Bacterial Diversity in the Mud Flat of Sunchon Bay, Chunnam Provice, by 16S rRNA Gene Analysis (16S rRNA 유전자 분석에 의한 전남 순천만 갯벌의 세균 다양성)

  • 이명숙;홍순규;이동훈;배경숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.137-144
    • /
    • 2001
  • In order to investigate the diversity of bacterial community in the mud flat of Sunchon Bay, Chunnam province, diversity of amplified 16S rDNA was examined. Total DNA was extracted from sediment soils and 16S rDNAs were amplified using PCR primers based on the universally conserved sequences in bacteria. Clonal libraries were constructed and 111 clones were examined by amplified rDNA restriction analysis (ARDRA) using HaeIII. Clones were clustered based on restriction patterns using computer program, GelCompar II. One hundred different RFLP types were detected from 111 clones. The 20 clones were selected and sequenced according to dendrograms derived from ARDRA, to cover most of the bacterial diversity in the clone libraries. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA databases and GenBank. All sequences showed between 77 and 96.8% similarity to the known 16s rRNA sequence from cultured organisms. The 20 clones sequenced fell into seven major lineages of the domain Bacteria: alpha-, delta-, gamma-Proteobacteria, low G+C Gram positive bacteria, high G+C Gram positive bacteria, Sphingobacteria (Cytophaga) and Cyanobacteria (chloroplast). Among the clones, the Proteobacteria were dominant.

  • PDF

Cloning of celC, Third Cellulase Gene, from Pectobacterium carotovorum subsp. carotovorum LY34 and its Comparison to Those of Pectobacterium sp.

  • LIM WOO JIN;RYU SUNG KEE;PARK SANG RYEOL;KIM MIN KEUN;AN CHANG LONG;HONG SU YOUNG;SHIN EUN CHULE;LEE JONG YEOUL;LIM YONG PYO;YUN HAN DAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.302-309
    • /
    • 2005
  • Phytopathogenic Pectobacterium carotovorum subsp. carotovorum (Pcc) LY34 secretes multiple isozymes of the plant cell wall degrading enzyme endoglucanases. We have cloned a third cel gene encoding CMCase from Pcc LY34. The structural organization of the celC gene (AY188753) consisted of an open reading frame (ORP) of 1,116 bp encoding 371 amino acid residues with a signal peptide of 22 amino acids within the NH$_2$-terminal region of pre-CelC. The predicted amino acid sequence of CelC was similar to that of Peetobaeterium ehrysanthemi Cel8Y (AF282321). The CelC has the conserved region of the glycoside hydrolase family 8. The apparent molecular mass of CelC was calculated to be 39 kDa by CMC-SDS-PAGE. The cellulase­minus mutant of Pee LY34 was as virulent as the wild-type in pathogenicity tests on tubers of potato. The results suggest that the CelC of Pce LY34 is a minor factor for the pathogenesis of soft-rot.

Isolation, Molecular Phylogeny, and Tissue Distribution of Four cDNAs Encoding the Apolipoprotein Multigene Family in Barred Knifejaw, Oplegnathus fasciatus (Teleostei, Perciformes)

  • Kim, Keun-Yong;Cho, Young-Sun;Kim, Sung-Koo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.88-97
    • /
    • 2008
  • Lipoproteins are complexes of lipids and specific apolipoproteins that are involved in lipid transport and redistribution among various tissues. In this study, we isolated full-length apolipoprotein cDNA sequences encoding apolipoprotein A-I (apoA-I), apoE, apoC-II, and apo-14 kDa in barred knifejaw, Oplegnathus fasciatus. In addition, we reconstructed phylogenetic trees and investigated mRNA tissue distributions. Alignment analyses of amino acid sequences revealed that secondary structures of the polypeptides apoA-I, apoE, and apoC-II in barred knifejaw are well conserved with their teleostean and mammalian counterparts in terms of characteristic tandem repetitive units forming amphipathic ${\alpha}$-helices. Both the sequence alignment data and cleavage sites of apo-14 kDa indicated a clear differentiation between Percomorpha and Cypriniformes. Meanwhile, the phylogenetic trees of apolipoprotein sub-families suggested that the common ancestor prior to the split of the Actinopterygii (ray-finned fishes) and Sarcopterygii (tetrapods) would have possessed the primordial protein-encoding genes. Tissue distribution of each apolipoprotein transcript determined by semi-quantitative RTPCR showed that barred knifejaw apoA-I transcripts were more or less ubiquitously expressed in the liver, intestines, brain, muscle, spleen, and kidney. The most striking difference from previous observations on barred knifejaw was the ubiquitous expression of apoE across all somatic tissues. Barred knifejaw apoC-II showed tissue-specific expression in the liver and intestines, while the liver and brain were the major sites of apo-14kDa mRNA synthesis.