Browse > Article
http://dx.doi.org/10.1007/s10059-009-0117-9

Expression of BrD1, a Plant Defensin from Brassica rapa, Confers Resistance against Brown Planthopper (Nilaparvata lugens) in Transgenic Rices  

Choi, Man-Soo (National Institute of Crop Science, Rural Development Administration)
Kim, Yul-Ho (National Institute of Crop Science, Rural Development Administration)
Park, Hyang-Mi (National Institute of Crop Science, Rural Development Administration)
Seo, Bo-Yoon (National Institute of Crop Science, Rural Development Administration)
Jung, Jin-Kyo (National Institute of Crop Science, Rural Development Administration)
Kim, Sun-Tae (Department of Plant Bioscience, Pusan National University)
Kim, Min-Chul (Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Shin, Dong-Bum (National Institute of Crop Science, Rural Development Administration)
Yun, Hong-Tai (National Institute of Crop Science, Rural Development Administration)
Choi, Im-Soo (National Institute of Crop Science, Rural Development Administration)
Kim, Chung-Kon (National Institute of Crop Science, Rural Development Administration)
Lee, Jang-Yong (National Academy of Agricultural Science, Rural Development Administration)
Abstract
Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.
Keywords
Brassica rapa; brown planthopper (BPH); Oryza sativa L.; plant defensin; resistance; transgenic plant;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Jang, I.C., Choi, W.B., Lee, K.H., Song, S.I., Nahm, B.H., and Kim, J.K. (2002). High-level and ubiquitous expression of the rice cytochrome c gene (OsCc1) and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiol. 129, 1473-1481   DOI   ScienceOn
2 Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G.G., Mendez, R., Soriano, F., Salinas, M., and de Haro, C. (1990). Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur. J. Biochem. 194, 533-539   DOI   ScienceOn
3 Alfonso-Rubi, J., Ortego, F., Castanera, P., Carbonero, P., and Diaz, I. (2003). Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res. 12, 23-31   DOI   ScienceOn
4 Bandyopadhyay, S., Roy, A., and Das, S. (2001). Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci. 161, 1025-1033   DOI   ScienceOn
5 Clarke, J.D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc: doi:10.1101/pdb.prot5177   DOI   ScienceOn
6 Epple, P., Apel, K., and Bohlmann, H. (1997). ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Lett. 400, 168-172   DOI   ScienceOn
7 Gallagher, K.D., Kenmore, P.E., and Sogawa, K. (1994). Judicial use of insecticides deter planthopper outbreaks and extend the life of resistant varieties in Southeast Asia rice. In: R.F. Denno and J.T. Perfect, eds., Planthoppers: Their ecology and management, (Chapman & Hall, New York) pp. 599-614
8 Thevissen, K., Francois, I.E., Takemoto, J.Y., Ferket, K.K., Meert, E.M., and Cammue, B.P. (2003). DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol. Lett. 226, 169-173   DOI   ScienceOn
9 Powell, K.S. (2001). Antifeedant effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol. Exp. Appl. 99, 71-77   DOI   ScienceOn
10 Sohn, S.I., Kim, Y.H., Cho, J.H., Kim, J.G., and Lee, J.Y. (2006). An efficient selection scheme for Agrobacterium-mediated cotransformation of rice using two selectable marker genes hpt and var. Korean J. Breed 38, 173-179
11 Dutta, I., Majumder, P., Saha, P., Ray, K., and Das, S. (2005b). Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci. 169, 996-1007   DOI   ScienceOn
12 Schuler, T.H., Poppy, G.M., Kerry, B.R., and Denholm, I. (1999). Insect-resistant transgenic plants. Trends Biotechnol. 16, 168-175   DOI   ScienceOn
13 Terras, F.R.G., Eggermont, K., Kovaleva, V., Raikhel, N.V., Osborn, R.W., Kester, A., Rees, S.B., Torrekens, S., Van Leuven, F., Vanderleyden, J., et al. (1995). Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7, 573-588   DOI   ScienceOn
14 Saitoh, H., Kiba, A., Nishihara, M., Yamamura, S., Suzuki, K., and Terauchi, R. (2001). Production of antimicrobial defensin in Nicotiana benthamiana with a potato virus X vector. Mol. Plant-Microbe Interact. 14, 111-115   DOI   ScienceOn
15 Wisniewski, M.E., Bassett, C.L., Artlip, T.S., Robert, P.W., Janisiewicz, W.J., Norelli, J.I., Goldway, M., and Droby, S. (2003). Characterization of a defensin in bark and fruit tissues of peach and antimicrobial activity of a recombinant defensin in the yeast, Pichia pastoris. Physiol. Plant 119, 563-572   DOI   ScienceOn
16 Dutta, I., Saha, P., Majumder, P., Sarkar, A., Chakraborti, D., Banerjee, S., and Das, S. (2005a). The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol. J. 3, 601-611   DOI   ScienceOn
17 Kim, S.M., and Shon, J.K. (2005). Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata Iugens Stal) using STS markers. Mol. Cells 20, 30-34   PUBMED
18 Lay, F.T., and Anderson, M.A. (2005). Defensins--components of the innate immune system in plants. Curr. Protein Pept. Sci. 6, 85-101   DOI   ScienceOn
19 Majumder, P., Banerjee, S., and Das, S. (2004). Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconj. J. 20, 525-530   DOI   ScienceOn
20 Thomma, B.P., Cammue, B.P., and Thevissen, K. (2002). Plant defensins. Planta 16, 193-202   DOI
21 Park, Y.S., Jeon, M.H., Lee, S.H., Moon, J.S., Cha, J.S., Kim, H.Y., and Cho, T.J. (2005). Activation of defense response in Chinese cabbage by a nonhost pathogene, Pseudomonas syringe pv. tomato. J. Biochem. Mol. Biol. 38, 748-754   DOI   PUBMED
22 Cha, Y.S., Ji, H., Yun, D.W., Ahn, B.O., Lee, M.C., Suh, S.C., Lee, C.S., Ahn, E.K., Jeon, Y.H., Jin, I.D., et al. (2008). Fine mapping of the rice Bph1 gene, which confers resistance to the brown planthopper (Nilaparvata lugens Stal), and development of STS markers for marker-assisted selection. Mol. Cells 26, 146-151   PUBMED
23 Lee, S.I., Lee, S.H., Koo, J.C., Chun, H.J., Lim, C.O., Mun, J.H., Song, Y.H., and Cho, M.J. (1999). Soybean kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilapar-vata lugens Stal) in transgenic rice. Mol. Breed 5, 1-9   DOI   ScienceOn
24 Loc, N.T., Tinjuangjun, P., Gatehouse, A.M.R., Christou, P., and Gatehouse, J.A. (2002). Linear transgene constructs lacking vector backbone sequences generate transgenic rices which accumulate higher levels of proteins conferring insects resistance. Mol. Breed 9, 231-244   DOI   ScienceOn
25 Ramesh, S., Nagadhara, D., Reddy, V.D., and Rao, K.V. (2004). Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci. 166, 1077-1085   DOI   ScienceOn
26 Falk, B., and Tsai, T.H. (1998). Biology and molecular biology of viruses in the genus tenuiviruses. Annu. Rev. Phytopathol. 36, c   DOI   ScienceOn
27 Tan, G.X., Weng, Q.M., Ren, X., Huang, Z., Zhu, L.L., and He, G.C. (2004). Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92, 211-217   DOI   ScienceOn
28 Foissac, X., Thi Loc, N., Christou, P., Gatehouse, A.M., and Gatehouse, J.A. (2000). Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglu-tinin; GNA). J. Insect Physiol. 46, 573-583   DOI   ScienceOn
29 Roy-Barman, S., Sautter, C., and Chattoo, B.B. (2006). Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res. 15, 435-446   DOI   ScienceOn
30 Thevissen, K., Warnecke, D.C., Francois, I.E., Leipelt, M., Heinz, E., Ott, C., Zahringer, U., Thomma, B.P., Ferket, K.K., and Cammue, B.P. (2004). Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem.279, 3900-3905   DOI   ScienceOn