References
- Chang, M. H., H. J. Kim, K. Y. Jahng, and S. C. Hong. 2008. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl. Microbiol. Biotechnol. 78: 963-972. https://doi.org/10.1007/s00253-008-1395-4
- Chen, G., K. W. Fan, F. P. Lu, Q. Li, T. Aki, F. Chen, and Y. Jiang. 2010. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N. Biotechnol. 27: 382-389. https://doi.org/10.1016/j.nbt.2010.04.005
- Gupta, N., P. Sharma, R. J. Santosh Kumar, R. K. Vishwakarma, and B. M. Khan. 2012. Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol. Biol. Rep. 39: 8803-8812. https://doi.org/10.1007/s11033-012-1743-4
- Hong, W. K., D. Rairakhwada, P. S. Seo, S. Y. Park, B. K. Hur, C. H. Kim, and J. W. Seo. 2011. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl. Biochem. Biotechnol. 164: 1468-1480. https://doi.org/10.1007/s12010-011-9227-x
- Jiang, Y., K. W. Fan, R. T. Wong, and F. Chen. 2004. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52: 1196-1200. https://doi.org/10.1021/jf035004c
- Kaya, K., A. Nakazawa, H. Matsuura, D. Honda, I. Inouye, and M. M. Watanabe. 2011. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci. Biotechnol. Biochem. 75: 2246-2248. https://doi.org/10.1271/bbb.110430
- Kim, S. K. and F. Karadeniz. 2012. Biological importance and applications of squalene and squalane. Adv. Food Nutr. Res. 65: 223-233. https://doi.org/10.1016/B978-0-12-416003-3.00014-7
- Kim, T. D., J. Y. Han, G. H. Huh, and Y. E. Choi. 2011. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant Cell Physiol. 52: 125-137. https://doi.org/10.1093/pcp/pcq179
- Ko, T. F., Y. M. Weng, and R. Y. Chiou. 2002. Squalene content and antioxidant activity of Terminalia catappa leaves and seeds. J. Agric. Food Chem. 50: 5343-5348. https://doi.org/10.1021/jf0203500
- Lee, S. and C. D. Poulter. 2008. Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J. Bacteriol. 190: 3808-3816. https://doi.org/10.1128/JB.01939-07
- LoGrasso, P. V., D. A. Soltis, and B. R. Boettcher. 1993. Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthetase. Arch. Biochem. Biophys. 307: 193-199. https://doi.org/10.1006/abbi.1993.1578
- Nakazawa, A., H. Matsuura, R. Kose, S. Kato, D. Honda, I. Inouye, et al. 2012. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol. 109: 287-291. https://doi.org/10.1016/j.biortech.2011.09.127
- Okada, S., T. P. Devarenne, and J. Chappell. 2000. Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch. Biochem. 373: 307-317. https://doi.org/10.1006/abbi.1999.1568
- Tikekar, R. V., R. D. Ludescher, and M. V. Karwe. 2008. Processing stability of squalene in amaranth and antioxidant potential of amaranth extract. J. Agric. Food Chem. 56: 10675-10678. https://doi.org/10.1021/jf801729m
- Uchida, H., H. Yamashita, M. Kajikawa, K. Ohyama, O. Nakayachi, R. Sugiyama, et al. 2009. Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L. Planta 229: 1243-1252. https://doi.org/10.1007/s00425-009-0906-6
- Wei, A. and T. Shibamoto. 2007. Antioxidant activities of essential oil mixtures toward skin lipid squalene oxidized by UV irradiation. Cutan. Ocul. Toxicol. 26: 227-233. https://doi.org/10.1080/15569520701224501
- Zhao, R. Y., W. Xiao, H. L. Cheng, P. Zhu, and K. D. Cheng. 2010. Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J. Ind. Microbiol. Biotechnol. 37: 1171-1182. https://doi.org/10.1007/s10295-010-0764-z
Cited by
- Accumulation of Squalene in a Microalga Chlamydomonas reinhardtii by Genetic Modification of Squalene Synthase and Squalene Epoxidase Genes vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0120446
- Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids vol.100, pp.10, 2013, https://doi.org/10.1007/s00253-016-7498-4
- Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives vol.26, pp.3, 2016, https://doi.org/10.4014/jmb.1510.10039
- The lipid metabolism in thraustochytrids vol.76, pp.None, 2013, https://doi.org/10.1016/j.plipres.2019.101007
- Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in Schizochytrium limacinum B4D1 vol.85, pp.19, 2013, https://doi.org/10.1128/aem.01243-19