DOI QR코드

DOI QR Code

Characterization of a Squalene Synthase from the Thraustochytrid Microalga Aurantiochytrium sp. KRS101

  • Hong, Won-Kyung (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Heo, Sun-Yeon (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Hye-Mi (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Chul Ho (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Sohn, Jung-Hoon (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kondo, Akihiko (Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University) ;
  • Seo, Jeong-Woo (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2012.12.10
  • Accepted : 2013.02.28
  • Published : 2013.06.28

Abstract

The gene encoding squalene synthase (SQS) of the lipid-producing heterotrophic microalga Aurantiochytrium sp. KRS101 was cloned and characterized. The krsSQS gene is 1,551 bp in length and has two exons and one intron. The open reading frame of the gene is 1,164 bp in length, yielding a polypeptide of 387 predicted amino acid residues with a molecular mass of 42.7 kDa. The deduced krsSQS sequence shares at least four conserved regions known to be required for SQS enzymatic activity in other species. The protein, tagged with $His_6$, was expressed into soluble form in Escherichia coli. The purified protein catalyzed the conversion of farnesyl diphosphate to squalene in the presence of NADPH and $Mg^{2+}$. This is the first report on the characterization of an SQS from a Thraustochytrid microalga.

Keywords

References

  1. Chang, M. H., H. J. Kim, K. Y. Jahng, and S. C. Hong. 2008. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl. Microbiol. Biotechnol. 78: 963-972. https://doi.org/10.1007/s00253-008-1395-4
  2. Chen, G., K. W. Fan, F. P. Lu, Q. Li, T. Aki, F. Chen, and Y. Jiang. 2010. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N. Biotechnol. 27: 382-389. https://doi.org/10.1016/j.nbt.2010.04.005
  3. Gupta, N., P. Sharma, R. J. Santosh Kumar, R. K. Vishwakarma, and B. M. Khan. 2012. Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol. Biol. Rep. 39: 8803-8812. https://doi.org/10.1007/s11033-012-1743-4
  4. Hong, W. K., D. Rairakhwada, P. S. Seo, S. Y. Park, B. K. Hur, C. H. Kim, and J. W. Seo. 2011. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl. Biochem. Biotechnol. 164: 1468-1480. https://doi.org/10.1007/s12010-011-9227-x
  5. Jiang, Y., K. W. Fan, R. T. Wong, and F. Chen. 2004. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52: 1196-1200. https://doi.org/10.1021/jf035004c
  6. Kaya, K., A. Nakazawa, H. Matsuura, D. Honda, I. Inouye, and M. M. Watanabe. 2011. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci. Biotechnol. Biochem. 75: 2246-2248. https://doi.org/10.1271/bbb.110430
  7. Kim, S. K. and F. Karadeniz. 2012. Biological importance and applications of squalene and squalane. Adv. Food Nutr. Res. 65: 223-233. https://doi.org/10.1016/B978-0-12-416003-3.00014-7
  8. Kim, T. D., J. Y. Han, G. H. Huh, and Y. E. Choi. 2011. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant Cell Physiol. 52: 125-137. https://doi.org/10.1093/pcp/pcq179
  9. Ko, T. F., Y. M. Weng, and R. Y. Chiou. 2002. Squalene content and antioxidant activity of Terminalia catappa leaves and seeds. J. Agric. Food Chem. 50: 5343-5348. https://doi.org/10.1021/jf0203500
  10. Lee, S. and C. D. Poulter. 2008. Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J. Bacteriol. 190: 3808-3816. https://doi.org/10.1128/JB.01939-07
  11. LoGrasso, P. V., D. A. Soltis, and B. R. Boettcher. 1993. Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthetase. Arch. Biochem. Biophys. 307: 193-199. https://doi.org/10.1006/abbi.1993.1578
  12. Nakazawa, A., H. Matsuura, R. Kose, S. Kato, D. Honda, I. Inouye, et al. 2012. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol. 109: 287-291. https://doi.org/10.1016/j.biortech.2011.09.127
  13. Okada, S., T. P. Devarenne, and J. Chappell. 2000. Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch. Biochem. 373: 307-317. https://doi.org/10.1006/abbi.1999.1568
  14. Tikekar, R. V., R. D. Ludescher, and M. V. Karwe. 2008. Processing stability of squalene in amaranth and antioxidant potential of amaranth extract. J. Agric. Food Chem. 56: 10675-10678. https://doi.org/10.1021/jf801729m
  15. Uchida, H., H. Yamashita, M. Kajikawa, K. Ohyama, O. Nakayachi, R. Sugiyama, et al. 2009. Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L. Planta 229: 1243-1252. https://doi.org/10.1007/s00425-009-0906-6
  16. Wei, A. and T. Shibamoto. 2007. Antioxidant activities of essential oil mixtures toward skin lipid squalene oxidized by UV irradiation. Cutan. Ocul. Toxicol. 26: 227-233. https://doi.org/10.1080/15569520701224501
  17. Zhao, R. Y., W. Xiao, H. L. Cheng, P. Zhu, and K. D. Cheng. 2010. Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J. Ind. Microbiol. Biotechnol. 37: 1171-1182. https://doi.org/10.1007/s10295-010-0764-z

Cited by

  1. Accumulation of Squalene in a Microalga Chlamydomonas reinhardtii by Genetic Modification of Squalene Synthase and Squalene Epoxidase Genes vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0120446
  2. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids vol.100, pp.10, 2013, https://doi.org/10.1007/s00253-016-7498-4
  3. Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives vol.26, pp.3, 2016, https://doi.org/10.4014/jmb.1510.10039
  4. The lipid metabolism in thraustochytrids vol.76, pp.None, 2013, https://doi.org/10.1016/j.plipres.2019.101007
  5. Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in Schizochytrium limacinum B4D1 vol.85, pp.19, 2013, https://doi.org/10.1128/aem.01243-19