Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12023

Characterization of a Squalene Synthase from the Thraustochytrid Microalga Aurantiochytrium sp. KRS101  

Hong, Won-Kyung (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Heo, Sun-Yeon (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Hye-Mi (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Chul Ho (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Sohn, Jung-Hoon (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kondo, Akihiko (Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University)
Seo, Jeong-Woo (Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.6, 2013 , pp. 759-765 More about this Journal
Abstract
The gene encoding squalene synthase (SQS) of the lipid-producing heterotrophic microalga Aurantiochytrium sp. KRS101 was cloned and characterized. The krsSQS gene is 1,551 bp in length and has two exons and one intron. The open reading frame of the gene is 1,164 bp in length, yielding a polypeptide of 387 predicted amino acid residues with a molecular mass of 42.7 kDa. The deduced krsSQS sequence shares at least four conserved regions known to be required for SQS enzymatic activity in other species. The protein, tagged with $His_6$, was expressed into soluble form in Escherichia coli. The purified protein catalyzed the conversion of farnesyl diphosphate to squalene in the presence of NADPH and $Mg^{2+}$. This is the first report on the characterization of an SQS from a Thraustochytrid microalga.
Keywords
Aurantiochytrium; squalene synthase; gene analysis; functional characterization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, G., K. W. Fan, F. P. Lu, Q. Li, T. Aki, F. Chen, and Y. Jiang. 2010. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N. Biotechnol. 27: 382-389.   DOI   ScienceOn
2 Chang, M. H., H. J. Kim, K. Y. Jahng, and S. C. Hong. 2008. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl. Microbiol. Biotechnol. 78: 963-972.   DOI
3 Gupta, N., P. Sharma, R. J. Santosh Kumar, R. K. Vishwakarma, and B. M. Khan. 2012. Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol. Biol. Rep. 39: 8803-8812.   DOI
4 Kim, S. K. and F. Karadeniz. 2012. Biological importance and applications of squalene and squalane. Adv. Food Nutr. Res. 65: 223-233.   DOI   ScienceOn
5 Hong, W. K., D. Rairakhwada, P. S. Seo, S. Y. Park, B. K. Hur, C. H. Kim, and J. W. Seo. 2011. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl. Biochem. Biotechnol. 164: 1468-1480.   DOI   ScienceOn
6 Jiang, Y., K. W. Fan, R. T. Wong, and F. Chen. 2004. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52: 1196-1200.   DOI   ScienceOn
7 Kaya, K., A. Nakazawa, H. Matsuura, D. Honda, I. Inouye, and M. M. Watanabe. 2011. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci. Biotechnol. Biochem. 75: 2246-2248.   DOI   ScienceOn
8 Kim, T. D., J. Y. Han, G. H. Huh, and Y. E. Choi. 2011. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant Cell Physiol. 52: 125-137.   DOI   ScienceOn
9 Ko, T. F., Y. M. Weng, and R. Y. Chiou. 2002. Squalene content and antioxidant activity of Terminalia catappa leaves and seeds. J. Agric. Food Chem. 50: 5343-5348.   DOI   ScienceOn
10 Lee, S. and C. D. Poulter. 2008. Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J. Bacteriol. 190: 3808-3816.   DOI   ScienceOn
11 LoGrasso, P. V., D. A. Soltis, and B. R. Boettcher. 1993. Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthetase. Arch. Biochem. Biophys. 307: 193-199.   DOI   ScienceOn
12 Tikekar, R. V., R. D. Ludescher, and M. V. Karwe. 2008. Processing stability of squalene in amaranth and antioxidant potential of amaranth extract. J. Agric. Food Chem. 56: 10675-10678.   DOI   ScienceOn
13 Uchida, H., H. Yamashita, M. Kajikawa, K. Ohyama, O. Nakayachi, R. Sugiyama, et al. 2009. Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L. Planta 229: 1243-1252.   DOI
14 Nakazawa, A., H. Matsuura, R. Kose, S. Kato, D. Honda, I. Inouye, et al. 2012. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol. 109: 287-291.   DOI   ScienceOn
15 Okada, S., T. P. Devarenne, and J. Chappell. 2000. Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch. Biochem. 373: 307-317.   DOI   ScienceOn
16 Wei, A. and T. Shibamoto. 2007. Antioxidant activities of essential oil mixtures toward skin lipid squalene oxidized by UV irradiation. Cutan. Ocul. Toxicol. 26: 227-233.   DOI   ScienceOn
17 Zhao, R. Y., W. Xiao, H. L. Cheng, P. Zhu, and K. D. Cheng. 2010. Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J. Ind. Microbiol. Biotechnol. 37: 1171-1182.   DOI