• 제목/요약/키워드: connection rotation

검색결과 218건 처리시간 0.031초

Motion characteristics of a floating wave energy converter with wave activating body type

  • Kim, Sung-soo;Lee, Jae-chul;Kang, Donghoon;Lee, Soon-sup
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.244-255
    • /
    • 2019
  • Interest in renewable energy has been increasing in recent years for many reasons, and there have been many studies on new types of wave energy converters and mechanisms for them. However, in this paper, motion characteristics of a wave energy converter with a wave activating body type is studied with an experiment. In order to conduct the experiment, a simple wave activating body type's wave energy converter is proposed. Experimental variations consist of connection type and location. The connection type controls the rotation motions of structures, and the connection location controls the distance between structures. The movement of floating structures, such as rotation, velocity, and acceleration, is measured with a potentiometer and a motion capture camera. Using the recorded data, the motion characteristics derived from the experimental variations are investigated.

단부평판 접합부의 극한저항능력 평가를 위한 비선형 유한요소해석 모델 (Nonlinear Finite Element Analysis Model for Ultimate Capacity Estimation of End-Plate Connection)

  • 최창근;정기택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.23-28
    • /
    • 1992
  • The ultimate capacity of end-plate connection is investigated through nonlinear finite element analysis. The example models are divided into stiffened case and unstiffened one. The refined finite element models are analyzed by utilizing a general purpose structural analysis computer program ADINA and the moment-rotation relationships of the connection are determined. The results are compared with the regression equation deduced by Krishnamurthy. It is planned to deduce a bilinear regression equation through a parametric study on various dimensions of the connection.

  • PDF

Effect of connection rotation capacities on seismic performance of IMF systems

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.73-89
    • /
    • 2016
  • The seismic performance of moment frames could vary according to the rotation capacity of their connections. The minimum rotation capacity of moment connections for steel intermediate moment frames (IMF) was defined as 0.02 radian in AISC 341-10. This study evaluated the seismic performance of IMF frames with connections having a rotation capacity of 0.02 radian. For this purpose, thirty IMFs were designed according to current seismic design provisions considering different design parameters such as the number of stories, span length, and seismic design categories. The procedure specified in FEMA P695 was used for conducting seismic performance evaluation. It was observed that the rotation capacity of 0.02 radian could not guarantee the satisfactory seismic performance of IMFs. This study also conducted seismic performance evaluation for IMFs with connections having the rotation capacity of 3% and ductile connections for proposing the minimum rotation capacity of IMF connections.

Evaluation of Three Support Shapes on Behavior of New Bolted Connection BBCC in Modularized Prefabricated Steel Structures

  • Naserabad, Alifazl Azizi;Ghasemi, Mohammad Reza;Shabakhty, Naser;Arab, Hammed Ghohani
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1639-1653
    • /
    • 2018
  • Bolted connections are suitable due to high quality prefabrication in the factory and erection in the workplace. Prefabrication and modularization cause high speed of erection and fabrication, high quality and quick return of investment. Their technical hitches transportation can be removed by prefabrication of joints and small fabrication of components. Box-columns are suitable members for bolted structures such as welded steel structures with moment frames in two directions etc., but their continual fabrication in multi-story buildings and performing the internal continuity plate in them will cause some practical dilemmas. The details of the proposal technique introduced here, is to remove such problems from the box columns. Besides, some other advantages include new prefabricated bolted beam-to-column connections referred to BBCC. This connection is a set of plates joined to columns, beams, support, and bolts. For a better understanding of its fabrication and erection techniques, two connection and one structural maquettes are made. The present work aims to study the cyclic behavior of connection numerically. To verify the accuracy of model, a similar tested connection was modelled. Its verification was then made through comparison with test results. The behavior of connection was evaluated for an exterior connection using three different support shapes. The effects of support shapes on rigidity, ductility, rotation capacity, maximum strength, four rad rotation strength were compared to those of the AISC seismic provision requirements. It was found that single beams support has all the AISC seismic provision requirements for special moment frames with and without a continuity plate, and box with continuity plate is the best support in the BBCC connection.

Comparison of support vector machines enabled WAVELET algorithm, ANN and GP in construction of steel pallet rack beam to column connections: Experimental and numerical investigation

  • Hossein Hasanvand;Tohid Pourrostam;Javad Majrouhi Sardroud;Mohammad Hasan Ramasht
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.19-28
    • /
    • 2023
  • This paper describes the experimental investigation of steel pallet rack beam-to-column connec-tions. Total behavior of moment-rotation (M-φ) curve and the effect of particular characteristics on the behavior of connection were studied and the associated load strain relationship and corre-sponding failure modes are presented. In this respect, an estimation of SPRBCCs moment and rotation are highly recommended in early stages of design and construction. In this study, a new approach based on Support Vector Machines (SVMs) coupled with discrete wavelet transform (DWT) is designed and adapted to estimate SPRBCCs moment and rotation according to four input parameters (column thickness, depth of connector and load, beam depth,). Results of SVM-WAVELET model was compared with genetic programming (GP) and artificial neural networks (ANNs) models. Following the results, SVM-WAVELET algorithm is helpful in order to enhance the accuracy compared to GP and ANN. It was conclusively observed that application of SVM-WAVELET is especially promising as an alternative approach to estimate the SPRBCCs moment and rotation.

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

Theoretical rotational stiffness of the flexible base connection based on parametric study via the whale optimization algorithm

  • Mahmoud T. Nawar;Ehab B. Matar;Hassan M. Maaly;Ahmed G. Alaaser;Osman Hamdy
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.43-52
    • /
    • 2023
  • This paper handles the results of an extensive parametric study on the rotational stiffness of the flexible base connection using ABAQUS program. The results of the parametric study show the relation between the applied moment and the relative rotation for 96 different base connections. The configurations of the studied connections considered different numbers, diameters, and spacing of the anchor bolts along with different thicknesses of the base plate to investigate the effect of these parameters on the rotational stiffness behavior. The results of the previous parametric research used through the whale optimization algorithm (WOA) to detect different equation formulation of the moment-rotation (M-Ɵr) equation to detect optimum equation simulates the general nonlinear rotational behavior of the flexible base connection considering all variables used in the parametric study. WOA is a relatively new promising algorithm, which is used in different types of optimization problems. For more verification, the classical genetic algorithm (GA) is used to make a comparison with WOA results. The results show that WOA is capable of getting an optimum equation of the M-Ɵr relation, which can be used to simulate the actual rotational stiffness of the flexible base connections. The rotational stiffness at H/150 can be calculated using WOA (1) method and be used as a design aid for engineering design.

전통 민도리식 목구조 화통맞춤의 구조적 특성 (A Structural Characteristics of Hwatong-Connections in Traditional Mindori Type of Wood Structures)

  • 유혜란;권기혁
    • 건축역사연구
    • /
    • 제21권3호
    • /
    • pp.7-28
    • /
    • 2012
  • This study is intended to Mindori structure which is general private houses' structural type among traditional types and is a basic study to confirm structural characteristics of Hwatong connection which is general connection type of column-beam-cross beam. It is aimed to analyze how main member, column, such as size, figure, thickness of Sungetuk and Dugeup affect on structure. Following conclusions are drawn. 1. According to connection conditions, models with big coefficient of friction show stable hysteretic behavior until the angle rotation of member reaches 1/60 and models with small coefficient of friction show dramatical increase in load after the angle rotation of member reaches 1/24. After the angle rotation of member reaches 1/30, separation distance of members is identified physically and cracks are not observed. 2. Specimens with big coefficient of friction show similar inner force regardless of column size(except column size 150mm) and models with small coefficient of friction show increasing inner force as the column size increases. Specimens with same sectional area have similar inner force even though the column figures are different. The thickness of Sungetuk and Dugeup doesn't affect inner force greatly, however, when the thickness of Sungetuk is thin, it could lead to failure of structure as it breaks. 3. The bigger the size of column and the coefficient of friction are, the smaller Bending stiffness depreciation ratio is. 4. Energy Dissipation Efficiency differs from the coefficient of friction. When the coefficient of friction is big, square column shows bigger than round one and it is bigger when the thickness of Sungetuk and Dugeup is thicker. When the coefficient of friction is small, round column shows bigger than square one.

전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구 (An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear)

  • 이수권;홍갑표
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.65-73
    • /
    • 2000
  • 상용 유한요소해석 프로그램인 ABAQUS(ver5.8)를 이용하여 전단력을 받는 더블앵글 접합부의 3D 해석을 수행하여 접합부의 모멘트-회전 관계곡선을 구하고 앵글과 볼트의 응력분포를 관찰한다. 해석시 주요 매개변수로는 볼트수, 게이지거리, 앵글의 두께로 하였으며 유한요소해석 결과로 구한 모멘트-회전곡선을 Richard가 제시한 예측식에 적용한 후 회귀분석을 통하여 접합부 거동을 예측하는 데 필요한 매개변수인 초기강성, 소성강성, 참조모멘트, 곡선형태변수를 구한다. 또한 매개변수들이 게이지거리, 앵글의 두께 및 볼트 수 변화에 따른 그래프를 작성하고 또한 이 그래프를 이용하여 접합부의 모멘트 및 LRFD의 접합부 분류에 따른 소성모멘트에 대한 접합부 모멘트의 비를 계산한다.

  • PDF