DOI QR코드

DOI QR Code

Theoretical rotational stiffness of the flexible base connection based on parametric study via the whale optimization algorithm

  • Mahmoud T. Nawar (Engineering Management Department, College of Engineering, Prince Sultan University) ;
  • Ehab B. Matar (Department of Structural Engineering, Zagazig University) ;
  • Hassan M. Maaly (Department of Structural Engineering, Zagazig University) ;
  • Ahmed G. Alaaser (Department of Structural Engineering, Zagazig University) ;
  • Osman Hamdy (Department of Civil Engineering, Zagazig Higher Institute of Engineering & Technology)
  • Received : 2022.03.03
  • Accepted : 2023.08.28
  • Published : 2023.10.10

Abstract

This paper handles the results of an extensive parametric study on the rotational stiffness of the flexible base connection using ABAQUS program. The results of the parametric study show the relation between the applied moment and the relative rotation for 96 different base connections. The configurations of the studied connections considered different numbers, diameters, and spacing of the anchor bolts along with different thicknesses of the base plate to investigate the effect of these parameters on the rotational stiffness behavior. The results of the previous parametric research used through the whale optimization algorithm (WOA) to detect different equation formulation of the moment-rotation (M-Ɵr) equation to detect optimum equation simulates the general nonlinear rotational behavior of the flexible base connection considering all variables used in the parametric study. WOA is a relatively new promising algorithm, which is used in different types of optimization problems. For more verification, the classical genetic algorithm (GA) is used to make a comparison with WOA results. The results show that WOA is capable of getting an optimum equation of the M-Ɵr relation, which can be used to simulate the actual rotational stiffness of the flexible base connections. The rotational stiffness at H/150 can be calculated using WOA (1) method and be used as a design aid for engineering design.

Keywords

Acknowledgement

The authors would like to thank Prince Sultan University for their support.

References

  1. AISC (2010), Steel Construction Manual, 14th Edition.
  2. Batho, C. and Lash, S.D. (1936), "Further investigations on beam and stanchion connections encased in concrete", Final Report, Together with Lab., Investigation on a Full Scale Steel Frame, Steel Structures Research Committee, Dept, of Scientific and Industrial Research, 92.
  3. Cox, M.G. (1972), "The numerical evaluation of b-splines", IMA J. Appl. Math. (Inst. Math. Its Appl.), 10(2), 134-149. https://doi.org/10.1093/imamat/10.2.134.
  4. Goldberg, D.E. (1989), "Genetic algorithms in search, optimization, and machine learning", Choice Rev. Online, 27(02), 27-0936. https://doi.org/10.5860/choice.27-0936.
  5. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2(3), 280-291. https://doi.org/10.1139/l76-034.
  6. Hadidi, A. and Rafiee, A. (2015), "A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames", Int. J. Steel Struct., 15(1), 89-102. https://doi.org/10.1007/s13296-015-3006-4.
  7. Huang, Z., Chen, Z., Huang, D. and Chui, Y.H. (2019), "Cyclic loading behavior of an innovative semi-rigid connection for engineered bamboo-steel hybrid frames", J. Build. Eng., 24, 100754. https://doi.org/10.1016/j.jobe.2019.100754.
  8. Katoch, S., Chauhan, S.S. and Kumar, V. (2021), "A review on genetic algorithm: past, present, and future", Multimedia Tool. Appl., 80(5), 8091-8126. https://doi.org/10.1007/s11042-020-10139-6.
  9. Lui, E.M. and Chen, W.F. (1986), "Analysis and behaviour of flexibly-jointed frames", Eng. Struct., 8(2), 107-118. https://doi.org/10.1016/0141-0296(86)90026-X.
  10. Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
  11. Mirjalili, S., Mirjalili, S.M., Saremi, S. and Mirjalili, S. (2020), "Whale optimization algorithm: Theory, literature review, and application in designing photonic crystal filters", Stud. Comput. Intel., 811, 219-238. https://doi.org/10.1007/978-3-030-12127-3_13.
  12. Mokhtar, R., Ibrahim, Z., Jumaat, M.Z., Abd. Hamid, Z. and Abdul Rahim, A.H. (2020), "Behaviour of semi-rigid precast beam-to-column connection determined using static and reversible load tests", Measure., 164, 108007. https://doi.org/10.1016/j.measurement.2020.108007.
  13. Nawar, M.T., Matar, E.B., Maaly, H.M., Alaaser, A.G. and El-Zohairy, A. (2021), "Assessment of Rotational Stiffness for metallic hinged base plates under axial loads and moments", Build., 11(8), 368. https://doi.org/10.3390/buildings11080368.
  14. Shallan, O., Maaly, H.M. and Hamdy, O. (2018), "A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms", Struct. Eng. Mech., 66(2), 173. https://doi.org/10.12989/sem.2018.66.2.173.
  15. Shallan, O., Maaly, H.M., Sagiroglu, M. and Hamdy, O. (2019), "Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Struct. Eng. Mech., 70(2), 221. https://doi.org/10.12989/sem.2019.70.2.221.
  16. Tao, H., Mao, M., Yang, H. and Liu, W. (2020), "Theoretical and experimental behaviour of a hybrid semi-rigid glulam beam-to-column connection with top and seat angles", Adv. Struct. Eng., 23(10), 2057-2069. https://doi.org/10.1177/1369433220906920.
  17. Xia, Y., Xiao, N. and Qian, X. (2019), "Research on the semi-rigid joint with T-stub in beam-to-column connection: suggestion for initial rotational stiffness formula", Ce/Papers, 3(3-4), 409-414. https://doi.org/10.1002/cepa.1075.