• 제목/요약/키워드: conductivity measurement

검색결과 627건 처리시간 0.022초

Van der Pauw 측정법을 이용한 금속 도전율의 직류와 교류특성 (DC and AC Characterization of Metals Conductivity using the van der Pauw Measurement Method)

  • 강전홍;한상옥
    • 전기학회논문지P
    • /
    • 제56권4호
    • /
    • pp.157-160
    • /
    • 2007
  • The van der Pauw technique is one of the popular methods for determining the conductivity of flat metal samples. Traceability of the national standard for the conductivity has been achieved by direct current measurement techniques in national measurement institutes of many countries. But recently, alternative current measurement techniques for determining the conductivity of flat metal samples is also interested. In this study, we measured the conductivity of non-ferrous and ferrous flat metals at alternative current using van der Pauw technique. As measurement results, the conductivities of the samples were decreased according to increasing the test frequency even though the decreasing ratio was different.

雨水採取機가 雨水成分에 미치는 影響 (Effects of Rain Water Sampler on the Results of Analysis)

  • 李敏熙;韓義正;辛燦基;韓振錫
    • 한국대기환경학회지
    • /
    • 제3권2호
    • /
    • pp.53-61
    • /
    • 1987
  • Automatic and manual rain smaplers wre installed at the roof of National Institute of Environmental Research (NIER), and the rain sampling and measurement were conducted during the period April to August 31, 1987. The rain sampling and measurement were carried out in the following manners: The 1st : Acidity and conductivity were measured entirely by automatic rain sampler (continuous measurement) The 2nd : Acidity and conductivity wrer measured in the laboratory with the sample that was taken out of automatic rain sampler. The 3rd : Acidity and conductivity were measured in the laboratory with the sample that was taken out of manual rain sampler. Afterwards, those different measurement values were compared each other and the following conclusions were obtained: 1) The pH of the continous measurement by the automatic sampler was lower than that of the laboratory measurement, and it was reversed in case of the conductivity. 2) The significance was recognized at 5% risk ratio for the population mean of difference of the measurement values of the pH and conductivity from both samples. 3) The significance was not recognized at 5% risk ratio by the analysis of variance by one way layout for the pH and conductivity. 4) The significance was recognized at 5% risk ratio by the analysis of variance by two way layouts for the pH conductivity. 5) The significance was recognized at 5% rrisk ratio for the differences of the pH values obtained by oboth samplers, and no significance was recognized for conductivity. 6) In comparison of the measurement values from the two samplers were shown a good correlation for pH; correlation coefficient (r) = 0.63, and regression equation Y = 0.53X + 2.78. For conductivity, the correlation was also excellent; correlation coefficient (r) = 0.53 and regression equation Y = 0.63X + 5.65.

  • PDF

CNT/EEA 반도전층 재료와 XLPE 절연체의 열적 특성 (Specific Heat and Thermal Conductivity Measurement of CNT/EEA Semiconducting Materials and XLPE Insulator)

  • 양종석;이경용;신동훈;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.514-519
    • /
    • 2006
  • To improve the mean-life and the reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154[kV] underground power transmission cable. Specimens were made of sheet form with the seven of specimens for measurement. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C]$. In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C]\;and\;55[^{\circ}]C$. From these experimental results both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature. We could know that a small amount of CNT has a excellent thermal properties.

Non-invasive Methods for Determination of Cellular Growth in Podophyllum hexandrum Suspension Cultures

  • Chattopadhyay, Saurabh;Bisaria, V.S.;Scheper, T.;Srivastava, A.K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권6호
    • /
    • pp.331-334
    • /
    • 2002
  • Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures of Podophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation In a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.

공내수 전기전도도의 자동측정시스템 구축을 위한 실험 (An Experiment for determining Electrical Conductivity in Modelholes using Continuous Measurement System)

  • 김영화;박정빈;임헌태
    • 지질공학
    • /
    • 제13권3호
    • /
    • pp.281-292
    • /
    • 2003
  • 모형시추공 내에서 공내수 전기전도도의 자동 측정시스템을 구축하고 이로부터 수리상수 결정과 관련된 제반 기초 환경을 검증하였다. 실험은 상대적으로 높은 염도를 공내수로 하고 증류수를 지층수로 사용하여 지층수의 유입과 유출되는 유량을 일정하게 유지한 상태에서 공내수의 전기전도도 프로파일을 구하는 방식으로 이루어졌다. 관찰의 주 대상은 공내수와 지층수 사이의 염도차. 온도차 및 지층수의 유입량. 유입 ·유출구에 따른 모형시추공 내에서의 전기전도도 변화 양상 파악에 있었다. 실헌결과, 이들 요인이 미치는 영향범위와 적정 측정 환경이 제시되어 향후 모델 실험 및 원위치시험에서 적용될 기초실험 여건이 마련되었다.

RF Conductivity Measurement of Conductive Zell Fabric

  • Nguyen, Tien Manh;Chung, Jae-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제16권1호
    • /
    • pp.24-28
    • /
    • 2016
  • This study presents a conductivity measurement technique that is applicable at radio frequencies (RF). Of particular interest is the measurement of the RF conductivity of a flexible Zell fabric, which is often used to implement wearable antennas on clothes. First, the transmission coefficient is measured using a planar microstrip ring resonator, where the ring is made of a Zell fabric. Then, the fabric's conductivity is determined by comparing the measured transmission coefficient to a set of simulation data. Specifically, a MATLAB-based root-searching algorithm is used to find the minimum of an error function composed of measured and simulation data. Several error functions have been tested, and the results showed that an error function employing only the magnitude of the transmission coefficient was the best for determining the conductivity. The effectiveness of this technique is verified by the measurement of a known copper foil before characterizing the Zell fabric. The conductivity of the Zell fabric at 2 GHz appears to be within the order of $10^4S/m$, which is lower than the DC conductivity of $5{\times}10^5S/m$.

Measurement of Thermal Conductivity of Foods in Liquid and Solid Phase Using a Thermal Probe

  • Hong, Ji-Hyang;Han, Young-Joe;Chung, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.334-339
    • /
    • 2005
  • An instrument using thermal probe method was designed to measure thermal conductivity of liquid and solid foods. Thermal conductivity probe was designed with diameter to length ratio of 100 and diameter of 0.51 mm to minimize axial flow effect on thermal conductivity measurement. Thermal conductivities of distilled/deionized water, glycerin, and beef frankfurter meat were measured at $20-80^{\circ}C$. Mean thermal conductivity values of water showed less than 2.0% difference from several reference values without using time correction factor or probe calibration constant. For glycerin, difference was less than 0.7% from reference values at $20-50^{\circ}C$. Mean values of thermal conductivity for beef frankfurter meat ranged from 0.389 to $0.350\;W/m{\cdot}K$ at $20-80^{\circ}C$.

인화성 액체 도전율에 관한 측정 및 비교(IEC 60079-32-2) 연구 (A Study on the Measurement and Comparison(IEC 60079-32-2) of Flammable Liquid Conductivity)

  • 이동훈;변정환
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.22-31
    • /
    • 2019
  • The flammable liquid conductivity is an important factor in determining the generation of electrostatic in fire and explosion hazardous areas, so it is necessary to study the physical properties of flammable liquids. In particular, the relevant liquid conductivity in the process of handling flammable liquids in relation to the risk assessment and risk control in fire and explosion hazard areas, such as chemical plants, is classified as a main evaluation item according to the IEC standard, and it is necessary to have flammable liquid conductivity measuring devices and related data are required depending on the handling conditions of the material, such as temperature and mixing ratio for preventing the fire and explosion related to electrostatic. In addition, IEC 60079-32-2 [Explosive Atmospheres-Part 32-2 (Electrostatic hazards-Tests)] refers to the measuring device standard and the conductivity of a single substance. It was concluded that there is no measurement data according to the handling conditions such as mixing ratio of flammable liquid and temperature together with the use and measurement examples. We have developed the measurement reliability by improving the structure, material and measurement method of measuring device by referring to the IEC standard. We have developed a measurement device that is developed and manufactured by itself. The test results of flammable liquid conductivity measurement and the data of the NFPA 77 (Recommended Practice on Static Electricity) Annex B Table B.2 Static Electric Characteristic of Liquids were compared and verified by conducting the conductivity measurement of the flammable liquid handled in the fire and explosion hazardous place by using Measuring / Data Acquisition / Processing / PC Communication. It will contribute to the prevention of static electricity related disaster by taking preliminary measures for fire and explosion prevention by providing technical guidance for static electricity risk assessment and risk control through flammable liquid conductivity measurement experiment. In addition, based on the experimental results, it is possible to create a big data base by constructing electrostatic physical characteristic data of flammable liquids by process and material. Also, it is analyzed that it will contribute to the foundation composition for adding the specific information of conductivity of flammable liquid to the physical and chemical characteristics of MSDS.

탄소나노튜브 복합체와 XLPE 절연체의 열전도도 특성 (Thermal Conductivity Characteristic of Carbon Nanotube Composites and XLPE Insulator)

  • 양종석;국정호;박노준;나창운;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.160-161
    • /
    • 2006
  • To Improve the mean-life and the reliability of power cable, we have investigated thermal conductivity of XLPE insulator and semiconducting materials in l54[kV] underground power transmission cable. Specimens were made of sheet form with the nine of specimens for measurement. Thermal conductivity were measured by Nano Flash Diffusivity thermal conductivity measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/mm]. In case of semiconducting materials. the measurement temperature ranges of thermal conductivity were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min].

  • PDF

지중 열교환기 보어홀 그라우팅 재료의 열전도도 측정 (Thermal Conductivity Measurement of Grouting Materials for Ground Heat Exchanger Borehole)

  • 손병후;신현준
    • 설비공학논문집
    • /
    • 제18권6호
    • /
    • pp.493-500
    • /
    • 2006
  • This paper concerns the measurement of thermal conductivity of grouting materials for ground loop heat exchanger. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of neat bentonite and mixtures of bentonite and various additives. Relative to the total mixture mass, as the percent additive was increased the mixture thermal conductivity increased. For the bentonite-silica sand mixtures, the higher density of the sand particles resulted in much higher mixture thermal conductivity. The quartzite and silica sands produced the largest increases in mixture thermal conductivity, while common masonry and limestone sands produced lower thermal conductivity increases.