Measurement of Thermal Conductivity of Foods in Liquid and Solid Phase Using a Thermal Probe

  • Hong, Ji-Hyang (Research Institute for Agricultural and Life Sciences, Seoul National University) ;
  • Han, Young-Joe (Department of Agricultural and Biological Engineering, Clemson University) ;
  • Chung, Jong-Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
  • Published : 2005.06.30

Abstract

An instrument using thermal probe method was designed to measure thermal conductivity of liquid and solid foods. Thermal conductivity probe was designed with diameter to length ratio of 100 and diameter of 0.51 mm to minimize axial flow effect on thermal conductivity measurement. Thermal conductivities of distilled/deionized water, glycerin, and beef frankfurter meat were measured at $20-80^{\circ}C$. Mean thermal conductivity values of water showed less than 2.0% difference from several reference values without using time correction factor or probe calibration constant. For glycerin, difference was less than 0.7% from reference values at $20-50^{\circ}C$. Mean values of thermal conductivity for beef frankfurter meat ranged from 0.389 to $0.350\;W/m{\cdot}K$ at $20-80^{\circ}C$.

Keywords

References

  1. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus, ASTM Standard 04(06) C 177-185 ASTM
  2. J. Phys. Chem. Ref. Data v.15 Standard reference data for the thermal conductivity of liquids Nietro de Castro, C.A.;Li, S.F.;Nagashima, A.;Trengove, R.D.;Wakeham, W.A. https://doi.org/10.1063/1.555758
  3. J. Phys. Chem. Ref. Data v.24 Standard reference data for the thermal conductivity of water Ramires, M.L.;Nitro de Castro, C.A.;Nagasaka, Y.;Nagashima, A.;Assael, M.J.;Wakeham, W.A. https://doi.org/10.1063/1.555963
  4. Transactions of the ASHVE v.56 Transient heat flow apparatus for the determination of thermal conductivities Hooper, F.C.;Lepper, F.R.
  5. Direct determination of thermal diffusivity and conductivity with a refined line-source technique. Progress in Aeronautics and Astronautics: ThermoPhysics. of Spacecraft and Planetary Bodies, 20 Nix, G.H.;Lowery, G.W.;Vachon, R.I.;Tanger, G.E.
  6. Int. J. Thermophysics. v.7 A computer controlled transient needle-probe thermal conductivity instrument for liquids Asher, G.B.;Sloan, E.D.;Graboski, M.S. https://doi.org/10.1007/BF00500155
  7. Trans. ASAE v.26 The thermal properties of tomato juice concentrates Choi, Y.;Okos, M.R.
  8. J. Food Sci. v.39 Experimental values of thermal conductivity of selected fiuits and vegetables Sweat, V.E. https://doi.org/10.1111/j.1365-2621.1974.tb07323.x
  9. J. Food Sci. v.46 Effect of cooking on the thermal conductivity of whole and ground lean beef Baghe-Khandan, M.S.;Okos, M.R. https://doi.org/10.1111/j.1365-2621.1981.tb04159.x
  10. J. Food Eng. v.17 Thermal conductivity of potato as a function of moisture content Wang, N.;Brennan, J.G. https://doi.org/10.1016/0260-8774(92)90058-E
  11. Physica v.15 A method of measuring the thermal conductivity of liquids Van der Held, E.F.;Van Drunen, F.G. https://doi.org/10.1016/0031-8914(49)90129-9
  12. Trans. ASHVE v.58 A study of a transient heat method for measuring thermal conductivity D'Eustachio, D.D.;Schreiner, R.E.
  13. J. Food Sci. v.38 Thermal conductivity of chicken meat at temperatures between -75 and $20^{\circ}C$ Sweat, V.E.;Haugh, C.G.;Stadelman, W.J. https://doi.org/10.1111/j.1365-2621.1973.tb02802.x
  14. J. Food Sci. v.58 Solid food thermal conductivity determination at high temperatures Gratzek, J.P.;Toledo, R.T. https://doi.org/10.1111/j.1365-2621.1993.tb09389.x
  15. Analysis of heat and mass transfer Eckert, E.R.;Drake, R.M.
  16. SAS User's Guide SAS Institute Inc.