• 제목/요약/키워드: conductivity effective mass

검색결과 40건 처리시간 0.023초

증발분출냉각의 열전달 특성에 관한 실험적 연구 (Experimental study on the heat transfer characteristics of evaporative transpiration cooling)

  • 이진호;남궁규완;김홍제;주성백
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1130-1137
    • /
    • 1988
  • 본 연구에서는 증발분출냉각장치의 설계 및 이의 응용을 위하여 두께가 비교 적 두꺼운(120mm) 다공물질층을 모델로 사용하여 증발분출냉각에 관한 열전달특성을 실험적으로 조사하였다. 실험은 열과 유체의 흐름이 1차원 정상상태에 대하여 증발 영역의 발생과 그 길이 및 상변화위치, 그리고 다공물질층의 표면온도등에 영향을 미 치는 인자들을 조사하며, 아울러 냉각수의 상변화시 다공층내 냉각수 유동의 안정성 여부를 관찰하였다.

기체확산층의 기공률이 고분자 전해질 연료전지 성능에 미치는 영향에 관한 전산해석 연구 (Numerical Study on the Effects of GDL Porosity on the PEMFC Performance)

  • 김경연;손영준;김민진;이원용
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.1022-1030
    • /
    • 2009
  • Numerical analysis was carried out to investigate the effect of GDL (Gas diffusion layer) porosity on the performance of PEMFC (proton exchange membrane fuel cell). A complete three-dimensional model was chosen for single straight channel geometry including cooling channel. Main emphasis is placed on the heat and mass transfer through the GDL with different porosity. The present numerical results show that at high current densities, the cell voltage is influenced by the GDL porosity while the cell performance is nearly the same at low current densities. At high current densities, low value of GDL porosity results in decrease of the fuel cell performance since the diffusion of reactant gas through GDL becomes slow with decreasing porosity. On the other hand, for high GDL porosity, the effective thermal conductivity becomes low and the heat generated in the cell is not removed rapidly. This causes the temperature of fuel cell to increase and gives rise to dehydration of the membrane, and ultimately increase of the ohmic loss.

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • 김경중;박재희;홍승휘;최석호;황혜현;장종식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석 (Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell)

  • 박준근;김선영;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF

히이트 파이프용 열교환기의 에너지 회수효과 해석 해법 (An Analytical Method on the Effective Energy Recovery for Heat Exchanger with Heat Pipes)

  • 장영석;서해성;이영수;전철호
    • 태양에너지
    • /
    • 제9권2호
    • /
    • pp.31-41
    • /
    • 1989
  • The purpose of this research is to study the utility of prediction program like a F.E.M. analysis for energy recovery of heat exchanger with heat pipe which uses arbitrary groove wick. The program is based on the utility by the experimental and applytical method of the single heat pipe. It is also expanded and applied in the prediction program of the heat exchanger. The results are as follows; 1) The effective thermal conductivity of the groove wick with arbitrary shape is counted by the thermal resistance change. 2) The more the number of rows, the more the effect energy recovery changing by the number of rows, the bigger the free velocity, the smaller the effect of energy recovery. 3) The effect of energy recovery increases according to the value of the rate of mass flow (Me/Mc) and also number of rows. 4) The comparison between calculated and data shows good agreement within 2.5% error, therefore the F.E.M. analysis of the study is useful to predict the performance of heat pipe-heat exchanger.

  • PDF

Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model

  • Linh Ba Vu;Soo-ho Jung;Jinhee Bae;Jong Min Park;Kyung Tae Kim;Injoon Son;Seungki Jo
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.119-125
    • /
    • 2024
  • The n-type Bi2-xSbxTe3 compounds have been of great interest due to its potential to achieve a high thermoelectric performance, comparable to that of p-type Bi2-xSbxTe3. However, a comprehensive understanding on the thermoelectric properties remains lacking. Here, we investigate the thermoelectric transport properties and band characteristics of n-type Bi2-xSbxTe3 (x = 0.1 - 1.1) based on experimental and theoretical considerations. We find that the higher power factor at lower Sb content results from the optimized balance between the density of state effective mass and nondegenerate mobility. Additionally, a higher carrier concentration at lower x suppresses bipolar conduction, thereby reducing thermal conductivity at elevated temperatures. Consequently, the highest zT of ~ 0.5 is observed at 450 K for x = 0.1 and, according to the single parabolic band model, it could be further improved by ~70 % through carrier concentration tuning.

응축탱크로 방출되는 안정된 증기제트 응축모델 (Modeling on the Condensation of a Stable Steam Jet Discharging into a Quenching Tank)

  • 김환열;하광순;배윤영;박종균;최상민
    • 에너지공학
    • /
    • 제10권4호
    • /
    • pp.349-356
    • /
    • 2001
  • 물과 증기의 직접접촉에 의한 응축 열전달은 움직이는 증기/물 경계면에서 열 및 물질 전달이 이루어지는 현상으로서, 매우 큰 열전달계수를 수반하는 특징이 있기 때문에 이를 응용한 설계가 산업계에서 광범위하게 이루어지고 있다. 본 연구에서는 단일 수평 배관을 통해 과냉각수가 있는 응축탱크로 안정된 증기제트가 방출될 때, 증기제트 형상을 예측하는 간단한 응축해석모델을 제시하였다. 해석모델은 축대칭 좌표계에서 질량, 운동량 및 에너지 방정식과 증기/물 경계면에서 의 응축 특성을 고려한 열평형 방정식을 사용하여 유도하였다. 증기/물 경계에서의 매우 큰 열전달율은 기존의 실험을 근거로 한 유효열전도계수에 의해 반영되었다. 해석결과는 실험결과와 비교하였고, 제시된 해석 모델은 실험에서 관찰된 바와 같이 증기 질량유속과 수조 온도가 증가할수록 증기제트 크기(반경 및 길이)가 증가하는 경향을 보였다.

  • PDF

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • 제13권5호
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Application of magnesium to improve uniform distribution of precipitated minerals in 1-m column specimens

  • Putra, Heriansyah;Yasuhara, Hideaki;Kinoshita, Naoki;Hirata, Akira
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.803-813
    • /
    • 2017
  • This study discussed the possible optimization of enzyme-mediated calcite precipitation (EMCP) as a soil-improvement technique. Magnesium chloride was added to the injection solution to delay the reaction rate and to improve the homogenous distribution of precipitated minerals within soil sample. Soil specimens were prepared in 1-m PVC cylinders and treated with the obtained solutions composed of urease, urea, calcium, and magnesium chloride, and the mineral distribution within the sand specimens was examined. The effects of the precipitated minerals on the mechanical and hydraulic properties were evaluated by unconfined compressive strength (UCS) and permeability tests, respectively. The addition of magnesium was found to be effective in delaying the reaction rate by more than one hour. The uniform distribution of the precipitated minerals within a 1-m sand column was obtained when 0.1 mol/L and 0.4 mol/L of magnesium and calcium, respectively, were injected. The strength increased gradually as the mineral content was further increased. The permeability test results showed that the hydraulic conductivity was approximately constant in the presence of a 6% mineral mass. Thus, it was revealed that it is possible to control the strength of treated sand by adjusting the amount of precipitated minerals.

화학기상증착 코팅로의 용량에 따른 탄소 코팅 SiOx의 물리적 특성 변화 분석 (Effect of chemical vapor depositon capacity on the physical characteristics of carbon-coated SiOx)

  • 맹석주;곽우진;박헌수;김용태;최진섭
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.441-447
    • /
    • 2022
  • Silicon-based materials are one of the most promising anode active materials in lithium-ion battery. A carbon layer decorated on the surface of silicon particles efficiently suppresses the large volume expansion of silicon and improves electrical conductivity. Carbon coating through chemical vapor deposition (CVD) is one of the most effective strategies to synthesize carbon- coated silicon materials suitable for mass production. Herein, we synthesized carbon coated SiOx via pilot scale CVD reactor (P-SiOx@C) and carbon coated SiOx via industrial scale CVD reactor (I-SiOx@C) to identify physical characteristic changes according to the CVD capacity. Reduced size silicon domains and local non-uniform carbon coating layer were detected in I-SiOx@C due to non-uniform temperature distribution in the industrial scale CVD reactor with large capacity, resulting in increased surface area due to severe electrolyte consumption.