• 제목/요약/키워드: conductivity/resistivity

Search Result 390, Processing Time 0.026 seconds

Property of Spin-sprayed ZnO Film on PC Substrate (스핀 스프레이법으로 PC 기판에 제작한 산화아연 박막의 특성)

  • Hoong, Jeongsoo;Matsushita, Nobuhiro;Katsumata, Ken-ichi;Park, Yongseo;Kim, Kyunghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.27-30
    • /
    • 2018
  • In this study, ZnO film was deposited on polycarbonate substrate by spin-spray method at low substrate temperature of $85^{\circ}C$. Surface morphology of ZnO films was changed by adding citrate from rod to dense structure. As-deposited ZnO film indicated high transmittance above 80%. In case of the resistivity, as-deposited ZnO film had high resistivity due to the existence of organic substance in the film. However, organic substance was removed and resistivity was decreased to $3.9{\times}10^{-2}{\Omega}{\cdot}cm$, after UV irradiation.

Predictions of Phonon and Electron Contributions to Thermal Conductivity in Silicon Films with Varying Doping Density (박막 실리콘 내 도핑 농도 변화에 따른 포논과 전자의 열전도율 기여도에 대한 수치해석)

  • Jin, Jae-Sik;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2182-2187
    • /
    • 2007
  • The relative contributions of phonon and electron to the thermal conductivity of silicon film with varying doping density are evaluated from the modified electron-phonon interaction model, which is applicable to the micro/nanoscale simulation of energy transport between energy carriers. The thermal conductivities of intrinsic silicon layer thicknesses from 20 nm to 500 nm are calculated and extended to the variation in n-type doping densities from 1.0 ${\times}$ $10^{18}$ to 5.0 ${\times}$ $10^{20}$ $cm^{-3}$, which agree well with the experimental data and theoretical model. From simulation results, the phonon and electron contributions to thermal conductivity are extracted. The electron contribution in the silicon is found to be not negligible above $10^{19}$ $cm^{-3}$, which can be classified as semimetal or metal by the value of its electrical resistivity at room temperature. The thermal conductivity due to electron is about 57.2% of the total thermal conductivity at doping concentration 5.0 ${\times}$ $10^{20}$ $cm^{-3}$ and silicon film thickness 100 nm.

  • PDF

A Study on the Resistivity Structure in Central Myanmar Basin using DC Resistivity and Magnetotellurics (전기비저항 탐사와 자기지전류 탐사 자료를 이용한 미얀마 중앙분지 전기비저항 구조 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jang, Seonghyung;Hwang, InGul;Lee, Donghoon;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.62-71
    • /
    • 2019
  • We conducted DC resistivity and MT survey to obtain the resistivity structure of the central Myanmar basin. We tried to analyze the underground structure through the resistivity variation of Myanmar by performing representative geophysical survey methods because researches on the electrical resistivity structure are insufficient in Myanmar. The electrical resistivity is expected to be low considering the marine sedimentary rocks composed of shale and sandstone in this area. The DC resistivity and MT survey were carried out using SmartRho of Geolux Co., Ltd. and MTU-5A of Phoenix geophysics Ltd., respectively, to visualize the electrical resistivity structure of study area. DC resistivity and MT survey showed an electrical resistivity less than dozens of ohm-m within the depth of 100 m. In particular, MT survey data were almost similar to TM and TE modes in the frequency range above 1 Hz. The two-dimensional inversion of MT data showed a subsurface structure with low resistivity below 150 ohm-m divided into east-west direction. We confirmed that the inversions of DC resisitivity and MT data along an overlapped survey line represented similar results. In the future, considering the high electrical conductivity, it would be effective to perform DC resistivity and MT survey simultaneously to study the electrical resistivity structure of the central Myanmar basin.

High Resistivity Characteristics of the Sinter Dust Generated from the Steel Plant

  • Lee, Jae-Keun;Hyun, Ok-Chun;Lee, Jung-Eun;Park, Sang-Deok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.630-638
    • /
    • 2001
  • The electrical resistivity of sinter dusts generated from the steel industry and coal fly ash from the coal power plant has been investigated using the high voltage conductivity cell based on JIS B 9915 as a function of temperature and water content. Dust characterization such as the chemical composition, size distribution, atomic concentration, and surface structure has been conducted. Major constituents of sinter dusts were Fe$_2$O$_3$(40∼74.5%), CaO (6.4∼8.2%), SiO$_2$(4.1∼6.0%), and unburned carbon (7.0∼14.7%), while the coal fly ash consisted of mainly SiO$_2$(51.4%), Al$_2$O$_3$(24.1%), and Fe$_2$O$_3$(10.5%). Size distributions of the sinter dusts were bi-modal in shape and the mass median diameters (MMD) were in the range of 24.7∼137㎛, whereas the coal fly ash also displayed bi-modal distribution and the MMD of the coal fly ash was 35.71㎛. Factors affecting resistivity of dusts were chemical composition, moisture content, particle size, gas temperature, and surface structure of dust. The resistivity of sinter dusts was so high as 10(sup)15 ohm$.$cm at 150$\^{C}$ that sinter dust would not precipitate well. The resistivity of the coal fly ash was measured 1012 ohm$.$cm at about 150$\^{C}$. Increased water contents of the ambient air lowered the dust resistivity because current conduction was more activated for absorption of water vapor on the surface layer of the dust.

  • PDF

A study on the drying characteristics of conductive ink by infrared drying system and the hot-air drying system (적외선 건조 및 열풍 건조에 대한 전도성 잉크의 건조 특성에 관한 연구)

  • Jung, Gil-Yong;Lee, Jai-Hyo;Hong, Seung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.183-188
    • /
    • 2009
  • RFID method is a non-contact automatic identification technology, which attaches microchips and antennas to an object in a tag form, to send and process information sent to the network using wireless frequency. Drying and curing process is extremely important which minimizes the resistivity of RFID antennas. This research is about the drying characteristic of conductivity ink, and analyzes and compares the hot-air drying process and infrared drying process. Also, the research was done for the improvement in drying performance by using combined process of hot-air and infrared mechanism. The experiment result shows that the hot-air or infrared drying system used alone cannot meet the required performance in drying printing method using conductivity ink. The combined drying system of hot-air and infrared ray showed resistance low enough in short drying and curing time, and this mechanism makes drying and curing process for mass and continuous production possible on-line.

  • PDF

Stress-Strain Behavior and Electrical Resistive of Conductive Silver Particle/Silicone Composite Pastes with Surface Modification (표면처리에 따른 도전성 은입자/실리콘 복합 페이스트의 응력-변형율 거동 및 전기비저항 특성)

  • 이건웅;방대석;박민;조동환
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.61-67
    • /
    • 2004
  • This paper reports the electrical conductivity and the stress-strain behavior of silver particle-filled silicone composite pastes for electromagnetic interference (EMI) shielding gasket materials. The percolation threshold (critical concentration) of the composite paste obtained by incorporating irregular sphere-shaped silver particles and room temperature vulcanizing (RTV) silicone resin was determined from the electrical conductivity result. At about 28 vol% Beading of untreated silver particles, the percolation phenomenon occurred and at this critical concentration, the volumetric resistivity, the tensile strength, and the elongation of the pastes were investigated. This work also suggests that the stress-strain characteristics of a composite paste filled with metal particles above the percolation threshold may be effectively improved by properly selecting a coupling agent.

The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation (이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계)

  • Lee, Jae S.;Kim, Bo-Young;Lee, Jae-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.

The Effects of Additions of In & Sb on Resistivity & Sensitivity in Tin Oxide Gas Sensors (In과 Sb의 첨가가 Tin Oxide 가스센서에서 Resistivity와 Sensitivity에 미치는 영향)

  • Son, Y.M.;Han, S.D.;Kim, J.W.;Sim, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.165-172
    • /
    • 1992
  • To determine the effect of additions of trivalent and pentavalent ions on the electrical conductivity and sensing behaviour, indium and antimony were incorporated in tin oxide by the coprecipitation method. Antimony may be considered to enter the cassiterite structure as pentavalent ions, thermal energy could excite electrons from these ions into the conduction band. Similarly the indium ions would enter the lattice as $In^{3+}$ but could accept electrons from the valence band, thereby becoming monovalent or divalent. These phenomena, however, how the potential barrier existing $SnO_{2}$ by addition of two kinds of ions could influence on the sensing behaviour in comparison with their influence on the resistivity were observed.

  • PDF

Effect of the Temperature on Resistivity of Carbon Black-Polyethylene Composites Below and Above Percolation Threshold (Carbon Black-Polyethylene복합재료의 Percolation Threshold 전후 저항율에 미치는 온도의 영향)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.644-648
    • /
    • 2009
  • Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.

Changes in Flexural Strength and Electrical Resistivity of Bulk Graphite According to the Viscosity of Impregnant (함침재의 점도에 따른 벌크흑연의 굽힘강도 및 전기비저항 변화)

  • Lee, Sang-Min;Lee, Sang-Hye;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.108-114
    • /
    • 2021
  • In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/㎤. The density increases to 1.67 g/㎤ and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.