Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.12.644

Effect of the Temperature on Resistivity of Carbon Black-Polyethylene Composites Below and Above Percolation Threshold  

Shin, Soon-Gi (Division of Advanced Materials and Chemical Engineering, Kangwon National University)
Publication Information
Korean Journal of Materials Research / v.19, no.12, 2009 , pp. 644-648 More about this Journal
Abstract
Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.
Keywords
composites; percolation; polyethylene; carbon black; tunneling conduction;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 C. Ishida, Handbook of Electronic Materials, p.769, ed. K. Z. Asakura, Asakura shoden, Tokyo (2006)
2 Y. J. Song, J. H. Seo, Y. S. Lee and S. K. Rha, Kor. J. Mater. Res., 19(6), 344(2009)   DOI   ScienceOn
3 A. L. Efros and B. I. Shklovskii, Phys. Stat. Sol. (B), 76, 475(1976)   DOI   ScienceOn
4 D. Staufer and A. Aharrony, Tayler & Francis, London, (1972)
5 S. Nakamura, K. Saito, G. Sawa, K. Kitagawa and A. Snarskii, Electronics A, 117, 371(1995)
6 S. Nakamura, K. Saito, G. Sawa, K. Kitagawa and A. Snarskii, Jpn. J. Appl. Phys., 136, 5163(1997)   DOI
7 S. Nakamura, K. Saito, G. Sawa and K. Kitagawa, Electronic A, 118, 280(1996)
8 S. Nakamura, K. Saito and G. Sawa, Electronics A, 119, 1335(1997)
9 S. G. Shin, Met. and Mat. Int., 7(6), 605(2002)
10 S. G. Shin and S. R. Lee, Met. and Mat. Int., 12(2), 137(2006)   DOI   ScienceOn
11 P. Sheng, Phys. Rev. B, 21, 2180(1980)   DOI
12 S. Nakamura, T. Tomimura and G. Sawa, 1999 Ann Report Conf. on Elect. Inst. and Drelec. Plenom., II, 293(1999)
13 H. S. Hong, Kor. J. Mater. Res., 18(7), 384(2008)   DOI   ScienceOn