• Title/Summary/Keyword: conductive carbon

Search Result 455, Processing Time 0.03 seconds

Highly Stretchable and Sensitive Strain Sensors Fabricated by Coating Nylon Textile with Single Walled Carbon Nanotubes

  • Park, Da-Seul;kim, Yoonyoung;Jeong, Soo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.363.2-363.2
    • /
    • 2016
  • Stretchable strain sensors are becoming essential in diverse future applications, such as human motion detection, soft robotics, and various biomedical devices. One of the well-known approaches for fabricating stretchable strain sensors is to embed conductive nanomaterials such as metal nanowires/nanoparticles, graphene, conducting polymer and carbon nanotubes (CNTs) within an elastomeric substrate. Among various conducting nanomaterials, CNTs have been considered as important and promising candidate materials for stretchable strain sensors owing to their high electrical conductivity and excellent mechanical properties. In the past decades, CNT-based strain sensors with high stretchability or sensitivity have been developed. However, CNT-based strain sensors which show both high stretchability and sensitivity have not been reported. Herein, highly stretchable and sensitive strain sensors were fabricated by integrating single-walled carbon nanotubes (SWNTs) and nylon textiles via vacuum-assisted spray-layer-by-layer process. Our strain sensors had high sensitivity with 100 % tensile strain (gauge factor ~ 100). Cyclic tests confirmed that our strain sensors showed very robust and reliable characteristic. Moreover, our SWNTs-based strain sensors were easily and successfully integrated on human finger and knee to detect bending and walking motion. Our approach presented here might be route to preparing highly stretchable and sensitive strain sensors with providing new opportunity to realize practical wearable devices.

  • PDF

Design and Analysis of Electromagnetic Wave Absorbing Structure Using Layered Composite Plates (적층 복합재 판을 이용한 전자기파 흡수 구조체의 설계)

  • 오정훈;홍창선;오경섭;김천곤;이동민
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.18-23
    • /
    • 2002
  • The absorption and the interference shielding of the problems thor both commercial and military purposes. In this study, the minimization of the electromagnetic wale reflections using composite layers with different dielectric properties was performed. Dielectric constants were measured for glass/epoxy composites containing conductive carbon blacks and carbon/epoxy fabric composites. Using the measured permittivities of the composites having various carbon black contents, the optimal electromagnetic wave absorbing structure in X-band(8.2GHz-12.4GHz) was determined. The optimal multi-layered composite plates have the thickness of 2.6mm. The maximum reflection loss is -30dB at 10GHz, and the bandwidth haying the absorptivity lower than -l0dB is about 2GHz.

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

The Initial Irreversible Capacity of the First Doping/Undoping of Lithium into Carbon

  • Doh, Chil-Hoon;Kim, Hyun-Soo;Moon, Seong-In
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.148-153
    • /
    • 2001
  • The initial irreversible capacity, $Q_i$, is one of the parameters to express the material balancing of the cathode to anode. We introduced new terms, which are the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface ($Q_{is}$), to express precisely the irreversibility of an electrode/electrolyte system. Two terms depended on kinds of active-materials and compositions of the electrode, but did not change with charging state. MPCF had the highest value of IIE and the lowest value of $Q_{is}$ in 1M $LiPE_6$/EC + DEC (1 : 1 volume ratio) electrolyte. IIE value of $LiCoO_2$ electrode was 97-98%, although the preparation condition of the material and the electrolyte were different. $Q_{is}$ value of $LiCoO_2$ was 0~1 mAh/g. MPCF-$LiCoO_2$ cell system had the lowest of the latent capacity. $Q_{is}$ value increased slightly by adding conductive material. IIE and $Q_{is}$ value varied with the electrolyte. By introducing PC to EC+DEC mixed solvent, IIE values were retained, but $Q_{is}$ increased. In case of addition of MP, IIE value increased and $Q_{is}$ value also increased a little.

  • PDF

Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC (PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향)

  • Lee, Jaeyoung;Lee, Wookum;Rim, Hyungryul;Joung, Gyubum;Lee, Hongki
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

A Study on the Dielectric Properties of EVA/Carbon Black Composites (EVA/카본블랙 복합체의 유전특성에 관한 연구)

  • Lee, K.Y.;Yang, J.S.;Lee, K.W.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1893-1895
    • /
    • 2005
  • To measure electrical properties of semiconducting materials in power cable, we have investigated dielectric properties of EVA showed by changing the content of carbon black. The specimen was primarily kneaded in material samples of pellet form for 5 minutes on rollers ringing between $70[^{\circ}C]$ and $100[^{\circ}C]$. Then that was produced as sheets after pressing for 20 minutes at $180[^{\circ}C]$ with a pressure of 200[kg/cm]. The contents of conductive carbon black were 20, 30 and 40(wt%), respectively The dielectric properties of specimens were measured by dielectric thermal analyzer (CONCEPT 40, NOVOCONTROL). Measuring frequencies were 10, 60, 100, 1000, 10000, 100000, 1000000(Hz) and measuring temperatures were -40, -20, 20, $90[^{\circ}C]$. From above experimental result, permittivity was increased, while $tan{\delta}$ was decreased according to an increment of the content of carbon black.

  • PDF

Flexible Energy-storage Devices: Maneuvers and Intermediate Towards Multi-functional Composites

  • Son, Ji Myeong;Oh, Il Kwon
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.355-364
    • /
    • 2018
  • Flexible energy-storage devices (FESDs) have been studied and developed extensively over the last few years because of demands in various fields. Since electrochemical performance and mechanical flexibility must be taken into account together, different framework from composition of conventional energy-storage devices (ESDs) is required. Numerous types of electrodes have been proposed to implement the FESDs. Herein, we review the works related to the FESDs so far and focus on free-standing electrodes and, especially substrate-based ones. The way to utilize carbon woven fabric (CF) or carbon cloth (CC) as flexible substrates is quite simple and intuitive. However, it is meaningful in the point of that the framework exploiting CF or CC can be extended to other applications resulting in multifunctional composites. Therefore, summary, which is on utilization of carbon-based material and conductive substrate containing CF and CC for ESDs, turns out to be helpful for other researchers to have crude concepts to get into energy-storage multi-functional composite. Moreover, polymer electrolytes are briefly explored as well because safety is one of the most important issues in FESDs and the electrolyte part mainly includes difficult obstacles to overcome. Lastly, we suggest some points that need to be further improved and studied for FESDs.

Study on the Carbon Membrane System for the Wastewater Treatment Via the Electric Adsorption and Desorption Process (전기적 흡.탈착법을 이용한 폐수처리용 탄소막 시스템 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • To remove total dissolved solid (TDS) from wastewater, a carbon membrane system was prepared, using carbon membranes made from conductive activated carbon and poly(vinylidene fluoride) (PVDF). Using 100 ppm aqueous solutions of NaCl, $Na_2SO_4,\;MgCl_2,\;MgSO_4$, the basic properties of the carbon membranes used were studied. For the treatment of the real dye wastewater supplied from Kyungin Corp., a pilot scale carbon membrane system was also prepared, which was consisted of 240 plies of carbon membranes of $20cm{\times}20cm$ (length${\times}$width). Using the real wastewater with different TDS such as 941, 2050, 2810, 3830, 4960, 6030 ppm, prepared by the dilution of the original wastewater with pure water, the performance of the pilot scale carbon membrane system was studied. The effect of the operational conditions was studied.

Synthesis and Characterization of Tin-Pyrolyzed Carbon Composites as Anode Material for Lithium Ion Secondary Batteries (리튬이온이차전지 음극활물질로써 주석을 첨가한 열분해탄소의 합성과 특성평가)

  • Hwang, Yun-Ju;Park, Sang-Ho;Kim, Ae-Rhan;Jisha, M.R.;Christy, Maria;Suh, Eun-Kyung;Nahm, Kee-Suk
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • In present work, tin-carbon mixtures by using carbon from pyrolyzed coffee seeds were synthesized. Synthesis methods includes simple mixing and chemical mixing. X-ray diffraction pattern indicated carbon and tin mixture peaks and scanning electron microscope images showed particles size of $12{\sim}85\;{\mu}m$ and shape. Charge discharge test were carried out. Tin-carbon mixture by chemical mixing indicated higher discharge capacity of 191 mAh/g than commercial carbon black(105 mAh/g) for 15cycles. Tin-carbon mixture by simple mixing indicated similar performance to carbon black.

Selective Adsorption of Uranium Ionsin High Concentration of Chemical Salts

  • Jung, Chong-Hun;Won, Hui-Jun;Kim, Gye-Nam;Park, Wangkyu;Wonzin Oh
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.119-120
    • /
    • 2004
  • A study on the selective adsorption of uranium(VI) from a high concentration of chemical salts has tern peformed to investigate the uranium removal mechanisms and the application conditions of the electrosorption technique using the activated carbon fiber(ACF) as a good conductive electrosorption adsorbent. Electrosorption test were carried out using an electrochemical cell.(omitted)

  • PDF