• Title/Summary/Keyword: conductive carbon

Search Result 447, Processing Time 0.032 seconds

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

Conductive Carbon Block filled Composite(I): The Effect of Carbon Block on the Conductivity (전도성 카본블랙이 충전된 도전성 고분자 복합재료(I): 카본블랙이 전기전도성에 미치는 영향)

  • Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.355-362
    • /
    • 1998
  • The purpose of this paper is to develop a rational engineering conductive carbon filled composite through understanding of the effect of conductive carbon black. Polycabonate(PC), Acrylonitrile Butadiene Styrene copolymer(ABS) and PC/ABS resin were used as matrix of the conductive polymer composites. From the experimental results, PC filled with the fiber shaped carbon black showed a possibility to be a rational engineering conductive composite.

  • PDF

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

A study on the Properties of Cement Mortar Containing Electrically Conductive Materials (전기전도성 재료를 혼입한 시멘트 모르타르의 전기적 특성에 관한 연구)

  • 최길섭;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.933-938
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete is a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry(e.g. for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with coke dust, graphite, carbon black and carbon fiber as filler. From the test result, as the content of electrically conductive material increased, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement, and aggregate. Cement mortar containing carbon fiber has the best electrical properties considering strength. From this study, it is enough to assure the use of carbon fiber, carbon black and graphite as a conductive filler for electrical conductive cement mortar.

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

Electrical Properties of Carbon Fiber/Aluminum Composite (Carbon Fiber/ Aluminum 복합재료의 전기적 특성연구)

  • Han, Se-Won;Kim, Bong-Seo;Woo, Byung-Chu;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.259-262
    • /
    • 1991
  • Carbon fiber/Aluminum composites were fabricated vacuum hot press method with condition of $10^{-3}$ torr, 100MPa, $600^{\circ}C$, 30min. Microstructure, mechanical properties, electrical properties and thermal properties of CF/Al composites were studied.

  • PDF

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Effect of Surface Area and Crystallinity of Amorphous Carbon Conductive Agent in SiOx Anode on the Performance of Lithium Ion Battery (리튬이온전지용 비정질 탄소 도전재의 표면적 및 흑연화도에 따른 SiOx 음극 활물질 특성 연구 )

  • Hyoung-Kyu Kang;Sung-Soo Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2023
  • Herein we investigated the effect of the conductive agent on the electrochemical performance of the SiOx anode. SiOx anodes have a relatively low volume expansion (~160%) compared to Pure-silicon, but have a problem in that they have a poor electrical conductivity characteristic. In this study, physical and electrochemical measurements were performed using two 0-dimensional amorphous carbon conductive agents with different crystallinity and surface area. The crystal structure of the conductive agents and the local graphitization degree were analyzed through XRD and Raman, and the surface area of the particles was observed through BET. In addition, the electrical performance according to the graphitization degree of the conductive agents was confirmed through a 4-point probe. As a result of the electrochemical cycle and rate performance, it was confirmed that the performance of SiOx using a conductive agent having a low graphitization degree and a high surface area was improved. The results in this study suggest that the graphitization degree and surface area of the amorphous carbon conductive agent may play an important role in the SiOx electrode.

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han;Jae-Shik Lee;Dong-Hak Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.603-608
    • /
    • 2023
  • Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.