DOI QR코드

DOI QR Code

Effect of Surface Area and Crystallinity of Amorphous Carbon Conductive Agent in SiOx Anode on the Performance of Lithium Ion Battery

리튬이온전지용 비정질 탄소 도전재의 표면적 및 흑연화도에 따른 SiOx 음극 활물질 특성 연구

  • Hyoung-Kyu, Kang (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sung-Soo, Kim (Graduate School of Energy Science and Technology, Chungnam National University)
  • 강형규 (충남대학교 에너지과학기술대학원) ;
  • 김성수 (충남대학교 에너지과학기술대학원)
  • Received : 2022.09.21
  • Accepted : 2022.10.11
  • Published : 2023.01.01

Abstract

Herein we investigated the effect of the conductive agent on the electrochemical performance of the SiOx anode. SiOx anodes have a relatively low volume expansion (~160%) compared to Pure-silicon, but have a problem in that they have a poor electrical conductivity characteristic. In this study, physical and electrochemical measurements were performed using two 0-dimensional amorphous carbon conductive agents with different crystallinity and surface area. The crystal structure of the conductive agents and the local graphitization degree were analyzed through XRD and Raman, and the surface area of the particles was observed through BET. In addition, the electrical performance according to the graphitization degree of the conductive agents was confirmed through a 4-point probe. As a result of the electrochemical cycle and rate performance, it was confirmed that the performance of SiOx using a conductive agent having a low graphitization degree and a high surface area was improved. The results in this study suggest that the graphitization degree and surface area of the amorphous carbon conductive agent may play an important role in the SiOx electrode.

Keywords

Acknowledgement

본 연구는 충남대학교와 지경부 과제(20016022)를 재원으로 수행한 연구과제의 결과입니다. 시료를 제공해주신 테라테크노스와 더카본스튜디오에 감사드립니다.

References

  1. J. Lee, J. Koo, B. Jang, and S. Kim, J. Power Sources, 329, 79 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2016.08.035]
  2. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). [DOI: https://doi.org/10.1038/35104644]
  3. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, and J.-G. Zhang, Nat. Energy, 4, 180 (2019). [DOI: https://doi.org/10.1038/s41560-019-0338-x]
  4. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Energ. Environ. Sci. 7, 513 (2014). [DOI: https://doi.org/10.1039/C3EE40795K]
  5. L. Frenck, G. K. Sethi, J. A. Maslyn, and N. P. Balsara, Front. Energy Res., 7, 115 (2019). [DOI: http://doi.org/10.3389/fenrg.2019.00115]
  6. R. A. Huggins, J. Power Sources, 81, 13 (1999). [DOI: https://doi.org/10.1016/S0378-7753(99)00124-X]
  7. T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, J. Electrochem. Soc., 142, 3297 (1995). [DOI: https://doi.org/10.1149/1.2049977]
  8. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, and Z. Ogumi, J. Electrochem. Soc., 149, A1598 (2002). [DOI: https://doi.org/10.1149/1.1518988]
  9. M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, and H. Wada, J. Power Sources, 26, 545 (1989). [DOI: https://doi.org/10.1016/0378-7753(89)80176-4]
  10. M. N. Obrovac and L. J. Krause, J. Electrochem. Soc., 154, A103 (2006). [DOI: https://doi.org/10.1149/1.2402112]
  11. J. Yin, M. Wada, K. Yamamoto, Y. Kitano, S. Tanase, and T. Sakai, J. Electrochem. Soc., 153, A472 (2006). [DOI: https://doi.org/10.1149/1.2160429]
  12. M. Green, E. Fielder, B. Scrosati, M. Wachtler, and J. S. Moreno, Electrochem. Solid-State Lett., 6, A75 (2003). [DOI: https://doi. org/10.1149/1.1563094]
  13. N. Umirov, D.-H. Seo, H.-Y. Kim, and S.-S. Kim. J. Alloys Compd., 882, 160558 (2021). [DOI: https://doi.org/10.1016/j.jallcom.2021.160558]
  14. N. Umirov, D.H. Seo, HY. Kim, and S.S. Kim, ACS Appl. Mater. Inter., 12, 17406 (2020). [DOI: https://doi.org/10.1021/acsami. 9b21997]
  15. H.-K. Kang, S.-H. Kim, U. Nurzhan, H.-Y. Kim, S.-H. Kim, J. Korean Battery Society, 1, 162 (2021). [DOI: https://doi.org/10.53619/KOBS.2021.12.1.2.162]
  16. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moon, and C. W. Park, J. Power Sources, 188, 574 (2009). [DOI: https://doi.org/10.1016/j.jpowsour.2008.11.137]
  17. K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, S. Shimosaki, J. Power Sources, 329, 462 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2016.08.110]
  18. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moon, and C. W. Park, J. Power Sources, 188, 574 (2009). [DOI: https://doi.org/10.1016/j.jpowsour.2008.11.137]
  19. J. Wang, H. Zhao, J. He, C. Wang, and J. Wang, J. Power Sources, 196, 4811 (2011). [DOI: https://doi.org/10.1016/j.jpowsour.2011.01.053]
  20. X. Yang, Z. Wen, X. Xu, B. Lin, and S. Huang, J. Power Sources, 164, 880 (2007). [DOI: https://doi.org/10.1016/j.jpowsour.2006.11.010]
  21. Z. Xiao, C. Yu, X. Lin, X. Chen, C. Zhang, and F. Wei, Carbon, 149, 462 (2019). [DOI: https://doi.org/10.1016/j.carbon.2019.04.051]
  22. K. Kim, H. Choi, and J.-H. Kim, Appl. Surf. Sci., 416, 527 (2017). [DOI: https://doi.org/10.1016/j.apsusc.2017.04.199]
  23. J. Han, S. Jo, I. Na, S. M. Oh, Y. M. Jeon, J. G. Park, B. Koo, H. Hyun, S. Seo, D. Lee, H. Kim, J. Kim, J. C. Lim, and J. Lim, ACS Appl. Mater. Interfaces, 13, 44, 52202 (2021). [DOI: https://doi.org/10.1021/acsami.1c14121]
  24. J.-S. Yun, B. Jang, S.-S. Kim, and H.-Y. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 179 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.3.179]
  25. Y. H. Chen, C. W. Wang, G. Liu, X. Y. Song, V. S. Battaglia, and A. M. Sastry, J. Electrochem. Soc., 154, A978 (2007). [DOI:https://doi.org/10.1149/1.2767839]
  26. H. Zheng, R. Yang, G. Liu, X. Song, and V. S. Battaglia, J. Phys. Chem. C, 116, 4875 (2012). [DOI: https://doi.org/10.1021/jp208428w]
  27. X. Zhang, J. Ma, and K. Chen, Nano-Micro Lett. 7, 360 (2015). [DOI: https://doi.org/10.1007/s40820-015-0051-7]
  28. T. Chen, L. Pan, X. Liu, and Z. Sun, Mater. Chem. Phys., 142, 345 (2013). [DOI: https://doi.org/10.1016/j.matchemphys.2013.07.027]
  29. M. Takeno, T. Fukutsuka, K. Miyazaki, and T. Abe, J. Electrochem. Soc., 164, A3862 (2017). [DOI: https://doi.org/10.1149/2.1381714jes]
  30. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43, 1731 (2005). [DOI: https://doi.org/10.1016/j.carbon.2005.02.018]
  31. T. H. Ko, W. S. Kuo, and Y. H. Chang, Polym. Compos., 21, 745 (2000). [DOI: https://doi.org/10.1002/pc.10229]
  32. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000). [DOI: https://doi.org/10.1103/PhysRevB.61.14095]
  33. J. E. Lee, J. B. Koo, B. Y. Jang, and S. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 255 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.4.255]
  34. M. J. Loveridge, M. J. Lain, Q. Huang, C. Wan, A. J. Roberts, G. S. Pappas, and R. Bhagat, Phys. Chem. Chem. Phys., 18, 30677 (2016). [DOI: http://doi.org/10.1039/C6CP06788C]
  35. N. Umirov, D. H. Seo, T. Kim, H.Y. Kim, and S.S. Kim, J. Ind. Eng. Chem., 71, 351 (2019). [DOI: http://doi.org/10.1016/j.jiec.2018.11.046]
  36. W.-J. Zhang, J. Power Sources, 196, 877 (2011). [DOI: http://doi.org/10.1016/j.jpowsour.2010.08.114]