Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.12.696

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors  

Yang, Inchan (Department of Chemical Engineering, Myongji University)
Lee, Gihoon (Department of Chemical Engineering, Myongji University)
Jung, Ji Chul (Department of Chemical Engineering, Myongji University)
Publication Information
Korean Journal of Materials Research / v.26, no.12, 2016 , pp. 696-703 More about this Journal
Abstract
In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.
Keywords
organic supercapacitor; conductive additive; electrochemical performance; charge-discharge rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Qu and H. Shi, J. Power Sources, 74, 99 (1998).   DOI
2 P. Thounthong, V. Chunkag, P. Sethakul, S. Sikkabut, S. Pierfederici and B. Davat, J. Power Sources, 196, 313 (2011).   DOI
3 S. L. Candelaria, R. Chen, Y. Jeong and G. Cao, Energy Environ. Sci., 5, 5619 (2012).   DOI
4 R. Burt, G. Birkett and X. S. Zhao, Phys. Chem. Chem. Phys., 16, 6519 (2014).   DOI
5 T. Sato, S. Marukane, T. Morinaga, T. Kamijo, J. Arafune and Y. Tsujii, J. Power Sources, 295, 108 (2015).   DOI
6 H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan and K. Cen, J. Power Sources, 324, 309 (2016).   DOI
7 H. Nishihara and T. Kyotani, Adv. Mater., 24, 4473 (2012).   DOI
8 E. Frackowiak, Q. Abbas and F. Beguin, J. Energy Chem., 22, 226 (2013).   DOI
9 G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012).   DOI
10 M. Inagaki, H. Konno and O. Tanaike, J. Power Sources, 195, 7880 (2010).   DOI
11 Z. Yu, L. Tetard, L. Zhai and J. Thomas, Energy Environ. Sci., 8, 702 (2015).   DOI
12 E. Frackowiak and F. Beguin, Carbon, 19, 937 (2001).
13 A. Thambidurai, J. K. Lourdusamy, J. V. John and S. Ganesan, Korean J. Chem. Eng., 31, 268 (2014).   DOI
14 K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. See, D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, Adv. Mater., 13, 497 (2001).   DOI
15 L. L. Zhang, R. Zhou and X. S. Zhao, J. Mater. Chem., 20, 5983 (2010).   DOI
16 L. Wei and G. Yushin, Nano Energy, 1, 552 (2012).   DOI
17 J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. Biener, K. A. Rose and T. F. Baumann, Energy Environ. Sci., 4, 656 (2011).   DOI
18 S. J. Kim, S. W. Hwang and S. H. Hyun, J. Mater. Sci., 40, 725 (2005).   DOI
19 J. Li, X. Wang, Q. Huang, S. Gamboa and P. J. Sebastian, J. Power Sources, 158, 784 (2006).   DOI
20 M. Kim, I. Oh and J. Kim, J. Power Sources, 282, 277 (2015).   DOI
21 D. L. Castello, D. C. Amoros, A. L. Solano, S. Shiraishi, H. Kurihara and A. Oya, Carbon, 41, 1765 (2003).   DOI
22 L. Mao, K. Zhang, H. S. O. Chan and J. Wu, J. Mater. Chem., 22, 1845 (2012).   DOI
23 A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).   DOI
24 J. Kuhn, R. Brandt, H. Mehling, R. Petri evi and J. Fricke, J. Non-Cryst. Solids, 225, 58 (1998).   DOI
25 D. Wu, R. Fu, Z. Sun and Z. Yu, J. Non-Cryst. Solids, 351, 915 (2005).   DOI
26 H. D. Yoo, J. H. Jang, J. H. Ryu, Y. Park and S. Mo. Oh, J. Power Sources, 267, 211 (2014).
27 C. Portet, P.L. Taberna, P. Simon and L. Robert, Electrochim. Acta, 49, 905 (2004).   DOI
28 C. Lei, F. Markoulidis, Z. Ashitaka and C. Lekakou, Electrochim. Acta, 92, 183 (2013).   DOI