DOI QR코드

DOI QR Code

탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers

  • Kim, Seong Yun (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Noh, Ye Ji (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Jang, Ji-un (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Choi, Seong Kyu (Department of Organic Materials and Textile Engineering, Jeonbuk National University)
  • 투고 : 2021.09.05
  • 심사 : 2021.09.30
  • 발행 : 2021.11.05

초록

지구 온난화 억제를 위한 전 세계적인 연비규제에 발맞춘 해결책으로 자동차에 경량구조복합재료를 적용하는 것이 메가트렌드로 인식되고 있다. 본 연구에서는 수리, 폐기 및 재활용 측면에서 유리한 열가소성 탄소섬유강화플라스틱의 적용을 극대화하기 위해 전도특성이 요구되는 부품 대체 이슈에 대응할 수 있는 기술적 접근을 제공하는 것을 목표로 수행되었다. 저점도 중합 가능한 기지재의 특성을 활용하여 전도성 필러를 파우더 믹싱 방법으로 균일하게 혼입하면서도 우수한 함침 특성을 나타내는 열가소성 탄소섬유강화플라스틱 제조방법에 기초하여 카본블랙, 탄소나노튜브, 그래핀 나노플레이틀렛, 흑연, 피치계 탄소섬유 등 다양한 탄소기반 전도성 필러를 최대 함량까지 혼입하여 전기저항 및 열전도도를 비교하여 고찰하였다. 전도성 탄소 필러의 종류나 형태보다는 최대 혼입량이 시편의 전도 특성을 제어하기 위해 가장 중요한 인자임을 확인하였고, 전기전도 특성을 향상시키기 위해서는 1차원 형태의 전도성 탄소필러를 적용하는 것이 유리할 수 있는 반면 열전도 특성을 향상시키기 위해서는 2차원 형태의 전도성 탄소필러를 적용하는 것이 유리 할 수 있다는 실험 결과를 확인하였다. 본 연구의 결과들은 열가소성 탄소섬유강화플라스틱의 전도 특성을 제어하기 위한 최적 구조 설계에 잠재적인 통찰력을 제공할 수 있다.

The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

키워드

과제정보

본 연구는 교육부에서 주관하는 21년 전북대학교 대학혁신 지원 사업의 지원을 받았음. 또한, 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1093839).

참고문헌

  1. Guarino, Maria-Vittoria, Sime, L.C., Schroeder, D., Malmierca-Vallet, I., Rosenblum, E., Ringer, M., Ridley, J., Feltham, D., Bitz, C., Steig, E.J., Wolff, E., Stoeve, J., and Sellar, A., "Sea-ice-free Arctic During the Last Interglacial Supports Fast Future Loss," Nature Climate Change, Vol. 10, 2020, pp. 928-932. https://doi.org/10.1038/s41558-020-0865-2
  2. Kulp, S.A., and Strauss, B.H., "New Elevation Data Triple Estimates of Global Vulnerability to Sea-Level Rise and Coastal Flooding," Nature Communications, Vol. 10, 2019, 4844. https://doi.org/10.1038/s41467-019-12808-z
  3. Gao, Y., Gao, X., and Zhang, X., "The 2℃ Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change-From the United Nations Framework Convention on Climate Change to the Paris Agreement," Engineering, Vol. 3, No. 2, 2017, pp. 272-278. https://doi.org/10.1016/j.eng.2017.01.022
  4. Keith, D.R., Houstonm S., and Naumov, S., "Vehicle Fleet Turnover and the Future of Fuel Economy," Environmental Research Letters, Vol. 14, No. 2, 2019, 021001. https://doi.org/10.1088/1748-9326/aaf4d2
  5. Park, K., Kittelson, D.B., Zachariah, M.R., and McMurry, P.H., "Measurement of Inherent Material Density of Nanoparticle Agglomerates," Journal of Nanoparticle Research, Vol. 6, 2004, pp. 267-272. https://doi.org/10.1023/B:NANO.0000034657.71309.e6
  6. Son, Y.N., Moon, J.B., Lim, G., and Kim, C.G., "Hypervelocity Impact Analysis of Composite Plate For Space Shielding System," Composites Research, Vol. 23, No. 6, 2010, pp. 14-18.
  7. Moon, C.J., Lee, C.L., Kweon, J.H., Choi, J.H., Jo, M.H., and Kim, T.G., "An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment," Composites Research, Vol. 21, No. 6, 2008, pp. 1-7.
  8. Gu, G.Y., Wang, Z.J., Kwon, D.J., and Park, J.M., "Interfacial Durability and Acoustic Properties of Transparent xGnP/PVDF/xGnP Graphite Composites Film for Acoustic Actuator," Composites Research, Vol. 25, No. 3, 2012, pp. 70-75.
  9. Jang, J.U., Park, H.C., Lee, H.S., Khil, M.S., and Kim, S.Y., "Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an Insitu Polymerizable Cyclic Oligoester," Scientific Reports, Vol. 8, 2018, 7659. https://doi.org/10.1038/s41598-018-25965-w
  10. Kim, H.S., Jang, J.U., Yu, J., and Kim, S.Y., "Thermal Conductivity of Polymer Composites Based on the Length of Multiwalled Carbon Nanotubes," Composites Part B: Engineering, Vol. 79, 2015, pp. 505-512. https://doi.org/10.1016/j.compositesb.2015.05.012
  11. Noh, Y.J., Lee, S., Kim, S.Y., and Youn, J.R., "High-speed Fabrication of Thermoplastic Carbon Fiber Fabric Composites with a Polymerizable, Low-viscosity Cyclic Butylene Terephthalate Matrix for Automotive Applications," Macromolecular Research, Vol. 22, 2014, pp. 528-533. https://doi.org/10.1007/s13233-014-2066-1
  12. Kim, S.H., Noh, Y.J., Ko, Y.W., Kim, S.Y., and Youn, J.R., "Improved Tensile Strength and Thermal Stability of Thermoplastic Carbon Fiber Fabric Composites by Heat Induced Crystallization of in situ Polymerizable Cyclic Butylene Terephthalate Oligomers," Polymer Engineering Science, Vol. 54, No. 9, 2014, pp. 2161-2169. https://doi.org/10.1002/pen.23765
  13. Noh, Y.J., Kim, H.S., and Kim, S.Y., "Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure," Carbon letters, Vol. 13, No. 4, 2012, pp. 243-247. https://doi.org/10.5714/CL.2012.13.4.243
  14. Noh, Y.J., Pak, S.Y., Hwang, S.H., Hwang, J.Y., Kim, S.Y., and Youn, J.R., "Enhanced Dispersion for Electrical Percolation Behavior of Multi-walled Carbon Nanotubes in Polymer Nanocomposites Using Simple Powder Mixing and in situ Polymerization with Surface Treatment of the Fillers," Composites Science and Technology, Vol. 89, 2013, pp. 29-37. https://doi.org/10.1016/j.compscitech.2013.09.013
  15. Lee, H.S., Kim, S.Y., Noh, Y.J., and Kim, S.Y., "Design of Microwave Plasma and Enhanced Mechanical Properties of Thermoplastic Composites Reinforced with Microwave Plasma-treated Carbon Fiber Fabric," Composites Part B: Engineering, Vol. 60, 2014, pp. 621-626. https://doi.org/10.1016/j.compositesb.2013.12.064
  16. Kim, S.Y., Noh, Y.J., and Yu, J., "Improved Thermal Conductivity of Polymeric Composites Fabricated by Solvent-free Processing for the Enhanced Dispersion of Nanofillers and a Theoretical Approach for Composites Containing Multiple Heterogeneities and Geometrized Nanofillers," Composites Science and Technology, Vol. 101, 2014, pp. 79-85. https://doi.org/10.1016/j.compscitech.2014.06.028
  17. Kim, S.Y., Noh, Y.J., and Yu, J., "Prediction and Experimental Validation of Electrical Percolation by Applying a Modified Micromechanics Model Considering Multiple Heterogeneous Inclusions," Composites Science and Technology, Vol. 106, 2015, pp. 156-162. https://doi.org/10.1016/j.compscitech.2014.11.015
  18. Kim, S.Y., Noh, Y.J., and Yu, J., "Thermal Conductivity of Graphene Nanoplatelets Filled Composites Fabricated by Solvent-free Processing for the Excellent Filler Dispersion and a Theoretical Approach for the Composites Containing the Geometrized Fillers," Composites Part A: Applied Science and Manufacturing, Vol. 69, 2015, pp. 219-225. https://doi.org/10.1016/j.compositesa.2014.11.018
  19. Noh, Y.J., and Kim, S.Y., "Synergistic Improvement of Thermal Conductivity in Polymer Composites Filled with Pitch Based Carbon Fiber and Graphene Nanoplatelets," Polymer Testing, Vol. 45, 2015, pp. 132-138. https://doi.org/10.1016/j.polymertesting.2015.06.003
  20. Noh, Y.J., Kim, H.S., Ku, B.C., Khil, M.S., and Kim, S.Y., "Thermal Conductivity of Polymer Composites with Geometric Characteristics of Carbon Allotropes," Advanced Engineering Materials, Vol. 18, No. 7, 2016, pp. 1127-1132. https://doi.org/10.1002/adem.201500451
  21. Kim, H.S., Kim, J.H., Yang, C.M., and Kim, S.Y., "Synergistic Enhancement of Thermal Conductivity in Composites Filled with Expanded Graphite and Multi-walled Carbon Nanotube Fillers via Melt-compounding Based on Polymerizable Low-viscosity Oligomer Matrix," Journal of Alloys and Compounds, Vol. 690, 2017, pp. 274-280. https://doi.org/10.1016/j.jallcom.2016.08.141
  22. Yu, J., Cha, J.E., and Kim, S.Y., "Thermally Conductive Composite Film Filled with Highly Dispersed Graphene Nanoplatelets via Solvent-free One-step Fabrication," Composites Part B: Engineering, Vol. 110, 2017, pp. 171-177. https://doi.org/10.1016/j.compositesb.2016.11.014
  23. Jang, J.U., Lee, H.S., Kim, J.W., Kim, S.Y., Kim, S.H., Hwang, I., Kang, B.J., and Kang, M.K., "Facile and Cost-effective Strategy for Fabrication of Polyamide 6 Wrapped Multi-walled Carbon Nanotube via Anionic Melt Polymerization of ε-caprolactam," Chemical Engineering Journal, Vol. 373, 2019, pp. 251-258. https://doi.org/10.1016/j.cej.2019.05.044
  24. Kim, S.Y., Jang, J.U., Haile, B.F., Lee, M.W., and Yang, B., "Swarm Intelligence Integrated Micromechanical Model to Investigate Thermal Conductivity of Multi-walled Carbon Nanotube-embedded Cyclic Butylene Terephthalate Thermoplastic Nanocomposites," Composites Part A: Applied Science and Manufacturing, Vol. 128, 2020, 105646. https://doi.org/10.1016/j.compositesa.2019.105646
  25. Jang, J.U., Cha, J.E., Lee S.H., Kim, J., Yang, B., Kim, S.Y., and Kim, S.H., "Enhanced Electrical and Electromagnetic Interference Shielding Properties of Uniformly Dispersed Carbon Nanotubes Filled Composite Films via Solvent-free Process Using Ring-opening Polymerization of Cyclic Butylene Terephthalate," Polymer, Vol. 186, 2020, 122030. https://doi.org/10.1016/j.polymer.2019.122030
  26. Cho, J., Lee, H., Nam, K.H., Yeo, H., Yang, C.M., Seong, D.G., Lee, D., and Kim, S.Y., "Enhanced Electrical Conductivity of Polymer Nanocomposite Based on Edge-selectively Functionalized Graphene Nanoplatelets," Composites Science and Technology, Vol. 189, 2020, 108001. https://doi.org/10.1016/j.compscitech.2020.108001
  27. Jang, J.U., Lee, S.H., Kim, J., Kim, S.Y., Kim, and S.H., "Nanobridge Effect on Thermal Conductivity of Hybrid Polymer Composites Incorporating 1D and 2D Nanocarbon Fillers," Composites Part B: Engineering, Vol. 222, 2021, 109072. https://doi.org/10.1016/j.compositesb.2021.109072
  28. Park, S.M., Kim, M.S., Choi, Y.S., Lee, E.S., Yoo, H.W., and Chon, J.S., "Carbon Fiber Tow Spreading Technology and Mechanical Properties of Laminate Composites," Composites Research, Vol. 28, No. 5, 2015, pp. 249-253. https://doi.org/10.7234/composres.2015.28.5.249
  29. Balandin, A.A., "Thermal Properties of Graphene and Nanostructured Carbon Materials," Nature Materials, Vol. 10, 2011, pp. 569-581. https://doi.org/10.1038/nmat3064
  30. Jang, H.G., Yang, B., Khil, M.S., Kim, S.Y., and Kim, J., "Comprehensive Study of Effects of Filler Length on Mechanical, Electrical, and Thermal Properties of Multi-walled Carbon Nanotube/Polyamide 6 Composites," Composites Part A: Applied Science and Manufacturing, Vol. 125, 2019, 105542. https://doi.org/10.1016/j.compositesa.2019.105542
  31. Park, M., Lee, H., Jang, J.U., Park, J.H., Kim, C.H., Kim, S.Y., and Kim, J., "Phenyl Glycidyl Ether as an Effective Noncovalent Functionalization Agent for Multiwalled Carbon Nanotube Reinforced Polyamide 6 Nanocomposite Fibers," Composites Science and Technology, Vol. 177, 2019, pp. 96-102. https://doi.org/10.1016/j.compscitech.2019.04.021
  32. Cho, J., Jang, H.G., Kim, S.Y., and Yang, B., "Flexible and Coatable Insulating Silica Aerogel/Polyurethane Composites via Soft Segment Control," Composites Science and Technology, Vol. 171, 2019, pp. 244-251. https://doi.org/10.1016/j.compscitech.2018.12.027
  33. Kim, Y.G., Kim, H.S., Jo, S.M., Kim, S.Y., Yang, B.J., Cho, J., Lee, S., and Cha, J.E., "Thermally Insulating, Fire-retardant, Smokeless and Flexible Polyvinylidene Fluoride Nanofibers Filled with Silica Aerogels," Chemical Engineering Journal, Vol. 351, 2018, pp. 473-481. https://doi.org/10.1016/j.cej.2018.06.102
  34. Kim, H.S., Jang, J.U., Lee, H., Kim, S.Y., Kim, S.H., Kim, J., Jung, Y.C., and Yang, B.J., "Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters," Advanced Engineering Materials, Vol. 20, No. 10, 2018, 1800204. https://doi.org/10.1002/adem.201800204
  35. Kim, H.S., Kim, J.H., Kim, W.Y., Lee, H.S., Kim, S.Y., and Khil, M.S., "Volume Control of Expanded Graphite Based on Inductively Coupled Plasma and Enhanced Thermal Conductivity of Epoxy Composite by Formation of the Filler Network," Carbon, Vol. 119, 2017, pp. 40-46. https://doi.org/10.1016/j.carbon.2017.04.013
  36. Yu, J., Choi, H.K., Kim, H.S., and Kim, S.Y., "Synergistic Effect of Hybrid Graphene Nanoplatelet and Multi-walled Carbon Nanotube Fillers on the Thermal Conductivity of Polymer Composites and Theoretical Modeling of the Synergistic Effect," Composites Part A: Applied Science and Manufacturing, Vol. 88, 2016, pp. 79-85. https://doi.org/10.1016/j.compositesa.2016.05.022
  37. Kim, H.M., Noh, Y.J., Yu, J., Kim, S.Y., and Youn, J.R., "Silica Aerogel/Polyvinyl Alcohol (PVA) Insulation Composites with Preserved Aerogel Pores Using Interfaces between the Super-hydrophobic Aerogel and Hydrophilic PVA Solution," Composites Part A: Applied Science and Manufacturing, Vol. 75, 2015, pp. 39-45. https://doi.org/10.1016/j.compositesa.2015.04.014