• 제목/요약/키워드: conductive AFM

검색결과 54건 처리시간 0.027초

투명전도성 산화물 전극에 따른 Green OLED의 특성연구 (The Study on Characteristics of Green Organic Light Emitting Device with Transparency Conductive Oxide Electrodes)

  • 기현철;김선훈;김회종;김상기;최용성;홍경진
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.615-618
    • /
    • 2009
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin film on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 800 [W]. Sheet resistance and surface roughness of ITO and ZnO thin film were measured by Hall-effect measurement system and AFM, respectively. The sheet resistance of ITO and ZnO thin film were 7.290 [$\Omega$] and 4.882 [$\Omega$], respectively. and surface roughness were 3.634 [nm] and 0.491 [nm], respectively. Green OLED was fabricated with the structure of TPD(400 [$\AA$])/Alq3(600 [$\AA$])/LiF(5 [$\AA$])/Al(1200 [$\AA$]). Turn-on voltage of green OLED applied ITO was 7 [V] and luminance was 7,371 [$cd/m^2$]. And, Turn-on voltage of green OLED applied ZnO was 14 [V] and luminance was 6,332 [$cd/m^2$].

Morphology and Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films

  • Kim, Seong Hoon;Min, Byung Ghyl;Lee, Sang Cheol;Park, Sung Bum;Lee, Tae Dong;Park, Min;Kumar, Satish
    • Fibers and Polymers
    • /
    • 제5권3호
    • /
    • pp.198-203
    • /
    • 2004
  • Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20-30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 $cm^{-1}$shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.

Terabit-per-square-inch Phase-change Recording on Ge-Sb-Te Media with Protective Overcoatings

  • Shin Jin-Koog;Lee Churl Seung;Suh Moon-Suk;Lee Kyoung-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.185-189
    • /
    • 2005
  • We reported here nano-scale electrical phase-change recording in amorphous $Ge_2Sb_2Te_5$ media using an atomic force microscope (AFM) having conducting probes. In recording process, a pulse voltage is applied to the conductive probe that touches the media surface to change locally the electrical resistivity of a film. However, in contact operation, tip/media wear and contamination could major obstacles, which degraded SNR, reproducibility, and lifetime. In order to overcome tip/media wear and contamination in contact mode operation, we adopted the W incorporated diamond-like carbon (W-DLC) films as a protective layer. Optimized mutilayer media were prepared by a hybrid deposition system of PECVD and RF magnetron sputtering. When suitable electrical pulses were applied to media through the conducting probe, it was observed that data bits as small as 25 nm in diameter have been written and read with good reproducibility, which corresponds to a data density of $1 Tbit/inch^2$. We concluded that stable electrical phase-change recording was possible mainly due to W-DLC layer, which played a role not only capping layer but also resistive layer.

  • PDF

Temperature Dependence of Nanoscale Friction and Conductivity on Vanadium Dioxide Thin Film During Metal-Insulator Transition

  • Kim, Jong Hun;Fu, Deyi;Kwon, Sangku;Wu, Junqiao;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.143.2-143.2
    • /
    • 2013
  • Nanomechanical and electrical properties of vanadium dioxide (VO2) thin films across thermal-driven phase transition are investigated with ultra-high vacuum atomic force microscopy. VO2 thin films have been deposited on the n-type heavily doped silicon wafer by pulsed laser deposition. X-ray diffraction reveals that it is textured polycrystalline with preferential orientation of (100) and (120) planes in monoclinic phase. As the temperature increases, the friction decreased at the temperature below the transition temperature, and then the friction increased as increasing temperature above the transition temperature. We attribute this observation to the combined effect of the thermal lubricity and electronic contribution in friction. Furthermore, the dependence of nanoscale conductance on the local pressure was indicated at the various temperatures, and the result was discussed in the view of pressure-induced metal-insulator transition.

  • PDF

고품질 3-Aminopropyltriethoxysilane 자기조립단분자막을 이용한 고전도도 Poly(3,4-ethylenedioxythiophene) 전극박막의 개발 (Development of Highly Conductive Poly(3,4-ethylenedioxythiophene) Thin Film using High Quality 3-Aminopropyltriethoxysilane Self-Assembled Monolayer)

  • 최상일;김원대;김성수
    • 통합자연과학논문집
    • /
    • 제4권4호
    • /
    • pp.294-297
    • /
    • 2011
  • Quality of PEDOT electrode thin film vapor phase-polymerized on 3-aminopropyltriethoxysilane (APS) self-assembled monolayer (SAM) is very crucial for making an ohmic contact between electrode and semiconductor layer of an organic transistor. In order to improve the quality of PEDOT film, the quality of APS-SAM laying underneath the film must be in the best condition. In this study, in order to improve the quality of APS-SAM, the monolayer was self-assembled on $SiO_2$ surface by a dip-coating method under strictly controlled relative humidity (< 18%RH). The quality of APS-SAM and PEDOT thin film were investigated with a contact angle analyzer, AFM, FE-SEM, and four-point probe. The investigation showed that a PEDOT film grown on the humidity-controlled SAM is very smooth and compact (sheet resistivity = 20.2 Ohm/sq) while a film grown under the uncontrolled condition is nearly amorphous and contains quite many pores (sheet resistivity = 200 Ohm/sq). Therefore, this study clearly proves that a highly improved quality of APSSAM can offer a highly conductive PEDOT electrode thin film on it.

강유전체 캐패시터 전극으로의 BaRuO$_3$박막의 구조적 및 전기적 특성 (Structural and Electrical Properties of RaRuO$_3$ Thin Film for Electrode of Ferroelectric Capacitors)

  • 박봉태;구상모;문병무
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.56-61
    • /
    • 1999
  • Highly conductive oxide films of BaRuO$_3$ have been grown heteroepitaxially on (100) LaAlO$_3$ single crystalline substrates by using pulsed laser deposition. The films are c-axis oriented with an in-plane epitaxial relationship of <010><100>BaRuO$_3$ // <110>LaAlO$_3$. Atomic force microscopy (AFM) observation shows that they consist of a fine-arranged network of grains and have a mosaic microstructure. Generally temperature-dependent resistivity shows the transition from metallic curve to semiconductor-metallic twofold curve by the deposition conditions for Ru oxide based materials like SrRuO$_3$, CaRuO$_3$, BaRuO$_3$, etc.. This twofold curve comes from the structural similarity of Ru oxide based materials including BaRuO$_3$. We find that the distance of Ru-Ru bonding in the unit cell of BaRuO$_3$ as well as the grain boundary scattering could be the two important causes of these interesting conductive properties.

  • PDF

원자간인력현미경을 이용한 분자수준의 중금속 이온 검출 (Molecular Level Detection of Heavy Metal Ions Using Atomic Force Microscope)

  • 김영훈;강성구;최인희;이정진;이종협
    • 청정기술
    • /
    • 제11권2호
    • /
    • pp.69-74
    • /
    • 2005
  • 본 연구에서는 AFM 양극산화법을 이용하여 서브마이크로 수준의 패턴을 구성하였다. 자기조립법으로 제조한 MPTMS/Si(100) 기질 위에 AFM 양극산화법으로 패턴을 형성하였고, 비에칭법을 이용하여 아민그룹을 지닌 기능기를 고정시켰다. 금속전극으로는 Frens 방법으로 제조한 금나노입자를 이용하였다. 금속이온의 흡착에 따른 전도도는 근거리의 경우 coherent tunneling에 의존하지만, 원거리 전극에서는 incoherent tunneling에 의존한다. 전극의 간격이 가까울수록 저항이 감소하여 센서의 감도와 최소검출능을 개선할 수 있었다. 또한 다중기능성을 부여하여 센서의 선택도를 부여하였으며, 패턴의 크기에 따른 최소검출농도를 낮출 수 있음을 확인하였다.

  • PDF

Recent Advances in Electrochemical Studies of π-Conjugated Polymers

  • Park, Su-Moon;Lee, Hyo-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.697-706
    • /
    • 2005
  • We review the evolution of electrochemical studies of conducting polymers into the current state-of-the-art based primarily on our work. While conventional electrochemical experiments sufficed for the needs in the phase of studies of both electrochemical synthesis and characterization of conducting polymers, developments of various new experimental techniques have led to their introduction to this field for more refined information. As a result, the conventional electrochemical, spectroelectrochemical, electrochemical quartz crystal microbalance, impedance, and morphological as well as electrical characterization studies all made important contributions to a better understanding of the polymerization mechanisms and the conductive properties of these classes of polymers. From this review, we hereby expect that the electrochemical techniques will continue to play important roles in bringing this field to the practical applications such as nanoscale electronic devices.

박막태양전지용 ZnO:Al 투명전도막 표면 Self-Texturing 연구 (Study of Self Texturing on ZnO:Al TCO surface for Thin-Film Solar Cell)

  • 오경석;윤순길;이정철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.127.2-127.2
    • /
    • 2011
  • 본 연구에서는 RF Magnetron Sputtering System을 이용하여 ZnO계 투명전도막 증착시 Vaporization된 MeOH를 유입함으로써 박막증착과 동시에 표면의 Roughness를 제어하여 이에따른 전기적 특성 및 광학적 특성의 개선에 대하여 연구하였다. 실험방법으로 기존의 RF Magnetron Sputtering System에 Vaporization이 가능한 Ultrasonic을 이용하여 MeOH를 Vaporized시켜 MFC Controll을 통해 챔버에 유입하여 ZnO계 투명전도막의 박막증착과 동시에 표면 Texturing을 하였다. ZnO계 투명전도막의 박막증착시 Vaporized MeOH의 유입에 따른 광학적 특성변화를 UV-visible-nIR spectrometry로 조사하였으며, 전기적 특성 변화를 4-Point-Probe로 조사하였으며, 표면적 특성 변화를 Atomic Force Microscope(AFM), Scanning Electron Microscopy(SEM)를 조사하였으며, 박막의 결정성장특성 변화를 X-ray Diffraction(XRD)으로 조사하였으며, Vaporized MeOH 유입에 따른 박막의 성분분석을 Secondary Ion Mass Spectrometry (SIMS)로 조사함으로써 최적의 조건 및 공정을 확립하였다.

  • PDF

연료전지용 양이온 전도성이 증가된 디페닐 단위를 갖는 블록공중합체 혼성막 제조 및 특성 (Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells)

  • 김애란
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.465-470
    • /
    • 2017
  • Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.