Browse > Article
http://dx.doi.org/10.7316/KHNES.2017.28.5.465

Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells  

KIM, AE RHAN (R&D Center for CANUTECH)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.28, no.5, 2017 , pp. 465-470 More about this Journal
Abstract
Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.
Keywords
Fuel cell; Hybrid membranes; Block copolymer; Polymer electrolyte membranes; Cationic conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. G. Kumar, A. R. Kim, K. S. Nahm, and D. J. Yoo, "High proton conductivity and low fuel crossover of polyvinylidene fluoride-hexafluoro propylen-silica sulfuric acid composite membranes for direct methanol fuel cells", Curr. Appl. Phys., Vol. 11, 2011, pp. 896-902.   DOI
2 J. H. Won, H. J. Lee, K. S. Yoon, Y. T. Hong, and S. Y. Lee, "Sulfonated SBA-15 mesoporous silica-incorporated sulfonated poly(phenylsulfone) composite membranes for lowhumidity proton exchange membrane fuel cells: anomalous behavior of humidity-dependent proton conductivity", Int. J. Hydrogen Energy, Vol. 37, 2012, pp. 9202-9211.   DOI
3 M. Vinothkannan, R. Kannan, A. R. Kim, G. G. Kumar, K. S. Nahm, and D. J. Yoo, "Facile enhancement in proton conductivity of sulfonated poly(ether ether ketone) using functionalized graphene oxidedsynthesis, characterization and application towards proton exchange membrane fuel cells", Colloid Polym. Sci., Vol. 294, 2016, pp. 1197-1207.   DOI
4 G. G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, and R. Elizabeth, "High ion and lower molecualr transportation of the poly vinylidene fluoride-hexafluoropropylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications", J. Power Sources, Vol. 195, 2010, pp. 5922-5928.   DOI
5 A. H. N. Rao, S. Y. Nam, and T. H. Kim, "Crosslinked poly(arylene ether sulfone) block copolymers containing pendant imidazolium groups as both crosslinkage sites and hydroxide conductors for highly selective and stable membranes", Int. J. Hydrogen Energy, Vol. 39, 2014, pp. 5919-5930.   DOI
6 M. Vinothkannan, A. R. Kim, K. S. Nahm, and D. J. Yoo, "Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity", RSC. Adv., Vol. 6, 2016, pp. 108851-108863.   DOI
7 H. Zhang, W. Wu, Y. Li, Y. Liu, J. Wang, B. Zhang, and J. Liu, "Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity", J. power sources, Vol. 279, 2015, pp. 667-677.   DOI
8 M. Gil, X. Ji, X. Li, H. Na, J. E. Hampsey, and Y. Lu, "Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications", J. Membr. Sci., Vol. 234, 2004, pp. 75-81.   DOI
9 N. Cornet, G. Beaudoing, and G. Gebel, "Influence of the structure of sulfonated polyimide membranes on transport properties", Sep. Purif. Technol., Vol. 22-23, 2001, pp. 681-687.   DOI
10 A. Bagheri, M. Javanbakht, H. Beydaghi, P. Salarizadeh, A. Shabanikiac, and H. S. Amoli, "Sulfonated poly(ether ether ketone) and sulfonated polyvinylidene fluoride-cohexafluoropropylene based blend roton exchange membranes for direct methanol fuel cell applications", RSC. Adv., Vol. 6, 2016, pp. 39500-39510.   DOI
11 A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Artificially designed, low humidifying organic-inorganic (SFBC-50/$FSiO_2$) composite membrane for electrolyte applications of fuel cells", Compos. B. Eng., Vol. 130, 2017, pp. 103-118.   DOI
12 A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC)", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 4349-4365.   DOI
13 R. W. Kopitzke, C. A. Linkous, H. R. Anderson, and G. L. Nelson, "Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes", J. Electrochem. Soc., Vol. 147, 2000, pp. 1677-1681.   DOI
14 D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly (arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenylmoiety: structural, thermal, electro-chemical and morphological characteristics", Polym. Int., Vol. 60, 2011, p. 80-92.
15 G. Xiao, G. Sun, D. Yan, P. Zhu, and P. Tao, "Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization", Polymer, Vol. 43, 2002, pp. 5335-5339.   DOI
16 M. Vinothkannan, A. R. Kim, G. G. Kumar, J. M. Yoon, and D. J. Yoo, "Toward improved mechanical strength, oxidative stability and protone conductivity of an aligned quadratic hybride(SPEEK/FPAPB/$Fe_3O_4$-FGO) membrane for application in high temperature and low humidity fuel cells", RSC. Adv., Vol. 7, 2017, pp. 39034-39048.   DOI