• Title/Summary/Keyword: conducting polymer sensor

Search Result 35, Processing Time 0.035 seconds

Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor

  • Jang, Woo-Kyung;Yun, Ju-Mi;Kim, Hyung-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • Conducting polymer-coated multiwalled carbon nanotubes (MWCNTs) were prepared by template polymerization in order to enhance their gas sensitivity. This investigation of the conducting polymer phases that formed on the surface of the MWCNTs is based on field-emission scanning electron microscopy images. The thermal stability of the conducting polymer-coated MWCNTs was significantly improved by the high thermal stability of MWCNTs. The synergistic effects of the conducting polymer-coated MWCNTs improve the gas-sensing properties. MWCNTs coated with polyaniline uniformly show outstanding improvement in gas sensitivity to $NH_3$ due to the synergistic combination of efficient adsorption of $NH_3$ gas and variation in the conduction of electrons.

RF Gas Sensor Using 4-Port Hybrid Coupler with Conducting Polymer (전도성 고분자 물질이 결합된 하이브리드 커플러를 적용한 RF 가스 센서)

  • Lee, Yong-Joo;Kim, Byung-Hyun;Lee, Hee-Jo;Hong, Yunseog;Lee, Seung Hwan;Choi, Hyang Hee;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this paper, a gas sensor using a modified $90^{\circ}$ hybrid coupler structure with conducting polymer which operates at 2.4 GHz is represented. Conducting polymers are used to the gas sensing material in proposed sensors. The conducting polymer varies its electrical property, such as work function and conductivity corresponding to the certain gas. To verify this variation of electrical property of conducting polymer at microwave frequencies, the conducting polymer is incorporated with the $90^{\circ}$ hybrid coupler structure, and this proposed sensor operates as reflection type variable attenuator and variable phase shifter. The conducting polymer is employed as impedence-variable transmission lines that cause a impedance mismatching between the general transmission line and conducting polymer. The experiment was conducted with 100 ppm ethanol gas at temperature of $28^{\circ}C$ and relative humidity of 85 %. As a result, the amplitude deviation of $S_{21}$ is 0.13 dB and the frequency satisfying ${\angle}S_{21}=360^{\circ}$ is shifted about 2.875 MHz.

Ethanol Gas Sensing Characteristics of Conducting Polymer Sensor Using Impedance (Impedance를 이용한 전도성고분자 센서의 에탄올 가스 감응특성)

  • Lee, Kyung-Mun;Yu, Joon-Boo;Jun, Hee-Kwon;Lee, Byung-Soo;Lee, Duk-Dong;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.155-159
    • /
    • 2003
  • The polypyrrole and polyaniline thin film sensors which were made by chemical polymerization were employed to detect ethanol gas. With a single sensor element we can obtain characteristic patterns of behaviour across a very wide frequency range when measuring either resistance or capacitance. Impedance spectroscopy was employed to study the gas sensing behavior of both capacitance and resistance based sensors with conducting polymer as the active sensing element.

Application of Electronic Nose for Aroma Analysis of Persimmon Vinegar Concentrates (감식초 농축액들의 향기성분 분석에 대한 전자코의 적용)

  • Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.314-321
    • /
    • 1999
  • This study was performed to test application possibility of electronic nose with 32 conducting polymer sensor arrays for aroma analysis of persimmon vinegar. The 20, 30, 40, 50, 60, and $70^{\circ}Bx$ persimmon vinegar concentrates were prepared by vacuum concentration at $55^{\circ}C$. The recovery yield of water soluble solid to concentrates was 55.5% on $20^{\circ}Bx$ persimmon vinegar concentrate. As the concentration of persimmon vinegar concentrates increased, pH of concentrates increased and acidity as acetic acid decreased. From sensory evaluation for persimmon vinegar concentrates, as the concentration of persimmon vinegar concentrates increased, their cooking odor and umami taste increased, sour taste and acidic odor decreased, salty odor and astringency were not changed. Aroma analysis by electronic nose (AromaScan) showed no difference in normalized pattern and odor intensity among persimmon vinegar concentrates. All quality factors among concentrates also were less than 1.042. And so the electronic nose with conducting polymer sensor was not suitable for aroma analysis of persimmon vinegar concentrate.

  • PDF

Studies on the Sensing Mechanism of Conducting Polymer for Volatile Organic Compound Sensing (휘발성 유기화합물 측정을 위한 전도성고분자 센서의 감응기구에 관한 연구)

  • Hwang, Ha-Ryong;Baek, Ji-Heum;Heo, Jeung-Su;Lee, Deok-Dong;Im, Jeong-Ok;Lee, Jun-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.599-602
    • /
    • 2001
  • In this study, we fabricated chemically polymerized PPy and PANi films with different selectivity by controlling dedoping time. And the sensing properties and mechanism of VOCs adsorption to conducting polymers were investigated. Thin sensor had higher sensitivity compared to thick one, and dedoped sensor for 1-minute highest sensitivity. Upon gas absorption, polypyrrole exhibited positive sensitivity while polyaniline had negative sensitivity. PPy film show hydrophilic property and PANi film show hydrophobic property. After the gas absorption, the sensitivity increased as a function of polarity of absorbed molecules. These behaviors are due to the polar molecules absorbed with the movable polaron or free carrier, and then it interrupt or generate the movement of polaron and carrier, and then it changes the conductivity of polymer. We found that conducting polymer sensors are very sensitive to the difference in polarity of gas molecules.

  • PDF

Nano Structured Potentiometric Sensors Based on Polyaniline Conducting Polymer for Determination of Cr (VI)

  • Ali, Mohammad-Khah;Ansari, Reza;Delavar, Ali Fallah;Mosayebzadeh, Zahra
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1247-1252
    • /
    • 2012
  • In this paper, a potentiometric sensor based on polyaniline conducting polymer for potentiometric determination of Cr (VI) ions is reported. Polyaniline was synthesized electrochemically (cyclic voltammetry method) onto a micro pencil graphite electrode (0.7 mm diameter) in the presence of HCl and diphenylcarbazide (termed as (PGE/PAni/DPC). Some initial experiments were performed in order to find out the optimized conditions for preparation of the introduced Cr (VI) sensor electrode. The plot of E vs. log [Cr (VI)], showed a linear response in the range from $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}$ M. High repeatability with the detection limit of $8.0{\times}10^{-7}$ M was obtained.

Improved Sensitivity of a Glucose Sensor by Encapsulation of Free GOx in Conducting Polymer Micropillar Structure

  • Jung, Shin-Hwan;Lee, Young-Kwan;Son, Yong-Keun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.124-129
    • /
    • 2011
  • A simple process of fabricating micropillar structure and its influence upon enhancing electrochemical biosensor response were studied in this work. Conducting polymer PEDOT was used as a base material in formulating a composite with PVA. Micro porous PC membrane filter was used as a template for the micropillar of the composite on ITO electrode. This structure could provide plenty of encapsulating space for enzyme species. After dosing enzyme solution into this space, Nafion film tent was cast over the pillar structure to complete the micropillar cavity structure. In this way, the encapsulation of enzyme could be accomplished without any chemical modification. The amount of enzyme species was easily controllable by varying the concentration of the dosing solution. The more amount of enzyme is stored in the sensor, the higher the electrochemical response is produced. One more reason for the sensitivity improvement comes from the large surface area of the micropillar structure. Application of 0.7 V produced the best current response under the condition of pH 7.4. This biosensor showed linear response to the glucose in 0.1~1 mM range with the average sensitivity of $14.06{\mu}A/mMcm^2$. Detection limit was 0.01 mM based on S/N = 3.

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin;Piao, Hushan;Son, Yongkeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

Electrical property of polyvinylalcohol (Polyvinylalcohol의 전기적 특성)

  • 김현철;구할본
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.184-189
    • /
    • 1995
  • The electrical property of ultra thin PVA films(several hundreds .angs.-several .mu.m in thickness) formed by sphere bulb blowing technique, has been studied. The electrical conductivity of relatively thick films(>several thousands .angs.) has been very high and enhanced by the exposure either to high humidity of air or $NH_3$, which can be explained in terms of the role of ionic transport. The use of PVA films as NH$_{3}$ sensor is also proposed. In ultra thin PVA films less than 1500.angs., two conducting states ; high conducting and low conducting states, are observed. The nonlinear current-voltage characteristics in the low conducting state and the switching between these two states are also confirmed. These properties are discussed in terms of electronic conduction processes. The breakdown strength of the ultra thin PVA film is found to be very high(-30MV/cm), supporting the electron avalanche process in a thick polymer films.

  • PDF

The fabrication and sensing characteristics of conducting polymer sensors for Measurement of VOCs (Volatile organic compounds) gas (휘발성 유기 화합물 가스 측정을 위한 전도성 고분자 센서의 제조(製造) 및 감응(感應) 특성(特性))

  • Paik, J.H.;Hwang, H.R.;Roh, J.G.;Huh, J.S.;Lee, D.D.;Lim, J.O.;Byun, H.G.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2001
  • Conducting polymer sensors show high sensitivity when exposed to volatile organic compounds gases at room temperature. The 8 sensor array using by polypyrrole and polyaniline has been fabricated by chemical polymerization for measuring sensing characteristics of VOCs gases. Conducting polymer was polymerized by using distilled pyrrole, aniline as a monomer and ammonium persulfate (APS) as an oxidant and dodecylbenzene sulfonic acid (DBSA) as a dopant. Dedoped film was synthesized by reverse voltage and redoped film was synthesized by using 1-octanesulfonic acid sodium salt as another dopant in electrochemical cell. The sensitivity and reversibility were influenced by doping, dedoping, redoping and thickness for the polypyrrole and polyaniline. We investigated the relation between the structure of conducting polymer and sensitivity of these sensors through the analysis of scanning electron microscope (SEM), scanning probe microscope (SPM) and $\alpha$-step.

  • PDF