DOI QR코드

DOI QR Code

Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor

  • Jang, Woo-Kyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Yun, Ju-Mi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Received : 2011.07.28
  • Accepted : 2011.08.29
  • Published : 2011.09.30

Abstract

Conducting polymer-coated multiwalled carbon nanotubes (MWCNTs) were prepared by template polymerization in order to enhance their gas sensitivity. This investigation of the conducting polymer phases that formed on the surface of the MWCNTs is based on field-emission scanning electron microscopy images. The thermal stability of the conducting polymer-coated MWCNTs was significantly improved by the high thermal stability of MWCNTs. The synergistic effects of the conducting polymer-coated MWCNTs improve the gas-sensing properties. MWCNTs coated with polyaniline uniformly show outstanding improvement in gas sensitivity to $NH_3$ due to the synergistic combination of efficient adsorption of $NH_3$ gas and variation in the conduction of electrons.

Keywords

References

  1. Agbor NE, Petty MC, Monkman AP. Polyaniline thin films for gas sensing. Sens Actuators B Chem, 28, 173 (1995). http://dx.doi.org/10.1016/0925-4005(95)01725-9.
  2. Buso D, Post M, Cantalini C, Mulvaney P, Martucci A. Gold nanoparticle-doped TiO2 semiconductor thin films: gas sensing properties. Adv Funct Mater, 18, 3843 (2008). http://dx.doi.org/10.1002/adfm.200800864.
  3. Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y. Single beta-AgVO3 nanowire $H_2S$ sensor. Nano Lett, 10, 2604 (2010). http://dx.doi.org/10.1021/nl1013184.
  4. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H. Nanotube molecular wires as chemical sensors. Science, 287, 622 (2000). http://dx.doi.org/10.1126/science.287.5453.622.
  5. Shimizu Y, Hyodo T, Egashira M. $H_2$ sensing performance of anodically oxidized $TiO_2$ thin films equipped with Pd electrode. Sens Actuators B Chem, 121, 219 (2007). http://dx.doi.org/10.1016/j.snb.2006.09.039.
  6. Jun YK, Kim HS, Lee JH, Hong SH. High $H_2$ sensing behavior of $TiO_2$ films formed by thermal oxidation. Sens Actuators B Chem, 107, 264 (2005). http://dx.doi.org/10.1016/j.snb.2004.10.010.
  7. Hughes RC, Schubert WK. Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J Appl Phys, 71, 542 (1992). http://dx.doi.org/10.1063/1.350646.
  8. Wang SG, Zhang Q, Yang DJ, Sellin PJ, Zhong GF. Multi-walled carbon nanotube-based gas sensors for $NH_3$ detection. Diamond Relat Mater, 13, 1327 (2004). http://dx.doi.org/10.1016/j.diamond.2003.11.070.
  9. Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta, 475, 1 (2003). http://dx.doi.org/10.1016/s0003-2670(02)01229-1.
  10. Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nature Mater, 2, 19 (2003). http://dx.doi.org/10.1038/nmat768.
  11. Lintao C, Kovalev A, Mayer TS. Conducting polymer nanofibers for gas sensor. International Conference on Information Technology and Applications in Biomedicine, Shenzhen, China, 196 (2008). http://dx.doi.org/10.1109/ITAB.2008.4570534.
  12. Sadek AZ, Trinchi A, Wlodarski W, Kalantar-zadeh K, Galatsis K, Baker C, Kaner RB. A room temperature polyaniline nanofiber hydrogen gas sensor. Fourth IEEE Conference on Sensors, Irvine, CA, 207 (2005). http://dx.doi.org/10.1109/ICSENS.2005.1597672.
  13. Yadav JB, Jhadav SV, Puri RK, Puri V. Properties of vacuum evaporated vapour chopped polyaniline thin film: effect of synthesis method. J Phys: Conf Ser, 114, 012037 (2008). http://dx.doi.org/10.1088/1742-6596/114/1/012037.
  14. Mylvaganam K, Zhang LC. Fabrication and application of polymer composites comprising carbon nanotubes. Recent Pat Nanotechnol, 1, 59 (2007). http://dx.doi.org/10.2174/187221007779814826.
  15. Bai H, Shi G. Gas sensors based on conducting polymers. Sensors, 7, 267 (2007). http://dx.doi.org/10.3390/s7030267.
  16. Genies EM, Boyle A, Lapkowski M, Tsintavis C. Polyaniline: a historical survey. Synth Met, 36, 139 (1990). http://dx.doi.org/10.1016/0379-6779(90)90050-U.
  17. Negi YS, Adhyapak PV. Development in polyaniline conducting polymers. J Macromol Sci: Polym Rev, 42, 35 (2002). http://dx.doi.org/10.1081/mc-120003094.
  18. Blanc JP, Derouiche N, El Hadri A, Germain JP, Maleysson C, Robert H. Study of the action of gases on a polypyrrole film. Sens Actuators B Chem, 1, 130 (1990). http://dx.doi.org/10.1016/0925-4005(90)80187-5.
  19. Bartlett PN, Ling-Chung SK. Conducting polymer gas sensors. Part II: Response of polypyrrole to methanol vapour. Sens Actuators, 19, 141 (1989). http://dx.doi.org/10.1016/0250-6874(89)87066-0
  20. Bartlett PN, Ling-Chung SK. Conducting polymer gas sensors. Part III: Results for four different polymers and five different vapours. Sens Actuators, 20, 287 (1989). http://dx.doi.org/10.1016/0250-6874(89)80127-1.
  21. Schymura S, Kuhnast M, Lutz V, Jagiella S, Dettlaff-Weglikowska U, Roth S, Giesselmann F, Tschierske C, Scalia G, Lagerwall J. Towards efficient dispersion of carbon nanotubes in thermotropic liquid crystals. Adv Funct Mater, 20, 3350 (2010). http://dx.doi.org/10.1002/adfm.201000539.
  22. Lee SK, Bai BC, Im JS, In SJ, Lee YS. Flame retardant epoxy complex produced by addition of montmorillonite and carbon nanotube. J Ind Eng Chem, 16, 891 (2010). http://dx.doi.org/10.1016/j.jiec.2010.09.014.
  23. Peng G, Track E, Haick H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett, 8, 3631 (2008). http://dx.doi.org/10.1021/nl801577u.
  24. Zheming G, Chunzhong L, Gengchao W, Ling Z, Qilin C, Xiaohui L, Wendong W, Shilei J. Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. J Ind Eng Chem, 16, 10 (2010). http://dx.doi.org/10.1016/j.jiec.2010.01.028.
  25. Lee CY, Sharma R, Radadia AD, Masel RI, Strano MS. On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array. Angew Chem (Int Ed), 47, 5018 (2008). http://dx.doi.org/10.1002/anie.200704501.
  26. Chen YL, Liu B, Wu J, Huang Y, Jiang H, Hwang KC. Mechanics of hydrogen storage in carbon nanotubes. J Mech Phys Solid, 56, 3224 (2008). http://dx.doi.org/10.1016/j.jmps.2008.07.007.
  27. Penza M, Rossi R, Alvisi M, Cassano G, Signore MA, Serra E, Giorgi R. Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sensor Actuator B Chem, 135, 289 (2008). http://dx.doi.org/10.1016/j.snb.2008.08.024.
  28. Nguyen HQ, Huh JS. Behavior of single-walled carbon nanotubebased gas sensors at various temperatures of treatment and operation. Sensor Actuator B Chem, 117, 426 (2006). http://dx.doi.org/10.1016/j.snb.2005.11.056.

Cited by

  1. Improvement of Thermal Conductivity of Poly(dimethyl siloxane) Composites Filled with Boron Nitride and Carbon Nanotubes vol.37, pp.6, 2013, https://doi.org/10.7317/pk.2013.37.6.722
  2. A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst vol.48, pp.23, 2013, https://doi.org/10.1007/s10853-013-7645-6
  3. Study of Polypyrrole-Coated MWCNT Nanocomposites for Ammonia Sensing at Room Temperature vol.03, pp.10, 2015, https://doi.org/10.4236/msce.2015.310005
  4. @polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors vol.7, pp.58, 2017, https://doi.org/10.1039/C7RA06093A
  5. @gold/MWCNT/polypyrrole hybrid composite for DMMP detection in chemical sensors vol.7, pp.80, 2017, https://doi.org/10.1039/C7RA09161C