Browse > Article
http://dx.doi.org/10.5714/CL.2011.12.3.162

Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor  

Jang, Woo-Kyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Yun, Ju-Mi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Kim, Hyung-Il (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Publication Information
Carbon letters / v.12, no.3, 2011 , pp. 162-166 More about this Journal
Abstract
Conducting polymer-coated multiwalled carbon nanotubes (MWCNTs) were prepared by template polymerization in order to enhance their gas sensitivity. This investigation of the conducting polymer phases that formed on the surface of the MWCNTs is based on field-emission scanning electron microscopy images. The thermal stability of the conducting polymer-coated MWCNTs was significantly improved by the high thermal stability of MWCNTs. The synergistic effects of the conducting polymer-coated MWCNTs improve the gas-sensing properties. MWCNTs coated with polyaniline uniformly show outstanding improvement in gas sensitivity to $NH_3$ due to the synergistic combination of efficient adsorption of $NH_3$ gas and variation in the conduction of electrons.
Keywords
conducting polymer; multiwalled carbon nanotube; template polymerization; gas sensor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Peng G, Track E, Haick H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett, 8, 3631 (2008). http://dx.doi.org/10.1021/nl801577u.   DOI   ScienceOn
2 Zheming G, Chunzhong L, Gengchao W, Ling Z, Qilin C, Xiaohui L, Wendong W, Shilei J. Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. J Ind Eng Chem, 16, 10 (2010). http://dx.doi.org/10.1016/j.jiec.2010.01.028.   DOI   ScienceOn
3 Lee CY, Sharma R, Radadia AD, Masel RI, Strano MS. On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array. Angew Chem (Int Ed), 47, 5018 (2008). http://dx.doi.org/10.1002/anie.200704501.   DOI   ScienceOn
4 Chen YL, Liu B, Wu J, Huang Y, Jiang H, Hwang KC. Mechanics of hydrogen storage in carbon nanotubes. J Mech Phys Solid, 56, 3224 (2008). http://dx.doi.org/10.1016/j.jmps.2008.07.007.   DOI   ScienceOn
5 Penza M, Rossi R, Alvisi M, Cassano G, Signore MA, Serra E, Giorgi R. Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sensor Actuator B Chem, 135, 289 (2008). http://dx.doi.org/10.1016/j.snb.2008.08.024.   DOI   ScienceOn
6 Nguyen HQ, Huh JS. Behavior of single-walled carbon nanotubebased gas sensors at various temperatures of treatment and operation. Sensor Actuator B Chem, 117, 426 (2006). http://dx.doi.org/10.1016/j.snb.2005.11.056.   DOI   ScienceOn
7 Yadav JB, Jhadav SV, Puri RK, Puri V. Properties of vacuum evaporated vapour chopped polyaniline thin film: effect of synthesis method. J Phys: Conf Ser, 114, 012037 (2008). http://dx.doi.org/10.1088/1742-6596/114/1/012037.   DOI   ScienceOn
8 Mylvaganam K, Zhang LC. Fabrication and application of polymer composites comprising carbon nanotubes. Recent Pat Nanotechnol, 1, 59 (2007). http://dx.doi.org/10.2174/187221007779814826.   DOI
9 Bai H, Shi G. Gas sensors based on conducting polymers. Sensors, 7, 267 (2007). http://dx.doi.org/10.3390/s7030267.   DOI
10 Genies EM, Boyle A, Lapkowski M, Tsintavis C. Polyaniline: a historical survey. Synth Met, 36, 139 (1990). http://dx.doi.org/10.1016/0379-6779(90)90050-U.   DOI   ScienceOn
11 Negi YS, Adhyapak PV. Development in polyaniline conducting polymers. J Macromol Sci: Polym Rev, 42, 35 (2002). http://dx.doi.org/10.1081/mc-120003094.   DOI   ScienceOn
12 Blanc JP, Derouiche N, El Hadri A, Germain JP, Maleysson C, Robert H. Study of the action of gases on a polypyrrole film. Sens Actuators B Chem, 1, 130 (1990). http://dx.doi.org/10.1016/0925-4005(90)80187-5.   DOI   ScienceOn
13 Bartlett PN, Ling-Chung SK. Conducting polymer gas sensors. Part II: Response of polypyrrole to methanol vapour. Sens Actuators, 19, 141 (1989). http://dx.doi.org/10.1016/0250-6874(89)87066-0   DOI   ScienceOn
14 Bartlett PN, Ling-Chung SK. Conducting polymer gas sensors. Part III: Results for four different polymers and five different vapours. Sens Actuators, 20, 287 (1989). http://dx.doi.org/10.1016/0250-6874(89)80127-1.   DOI   ScienceOn
15 Schymura S, Kuhnast M, Lutz V, Jagiella S, Dettlaff-Weglikowska U, Roth S, Giesselmann F, Tschierske C, Scalia G, Lagerwall J. Towards efficient dispersion of carbon nanotubes in thermotropic liquid crystals. Adv Funct Mater, 20, 3350 (2010). http://dx.doi.org/10.1002/adfm.201000539.   DOI   ScienceOn
16 Hughes RC, Schubert WK. Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J Appl Phys, 71, 542 (1992). http://dx.doi.org/10.1063/1.350646.   DOI
17 Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H. Nanotube molecular wires as chemical sensors. Science, 287, 622 (2000). http://dx.doi.org/10.1126/science.287.5453.622.   DOI   ScienceOn
18 Shimizu Y, Hyodo T, Egashira M. $H_2$ sensing performance of anodically oxidized $TiO_2$ thin films equipped with Pd electrode. Sens Actuators B Chem, 121, 219 (2007). http://dx.doi.org/10.1016/j.snb.2006.09.039.   DOI   ScienceOn
19 Jun YK, Kim HS, Lee JH, Hong SH. High $H_2$ sensing behavior of $TiO_2$ films formed by thermal oxidation. Sens Actuators B Chem, 107, 264 (2005). http://dx.doi.org/10.1016/j.snb.2004.10.010.   DOI   ScienceOn
20 Wang SG, Zhang Q, Yang DJ, Sellin PJ, Zhong GF. Multi-walled carbon nanotube-based gas sensors for $NH_3$ detection. Diamond Relat Mater, 13, 1327 (2004). http://dx.doi.org/10.1016/j.diamond.2003.11.070.   DOI   ScienceOn
21 Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta, 475, 1 (2003). http://dx.doi.org/10.1016/s0003-2670(02)01229-1.   DOI   ScienceOn
22 Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nature Mater, 2, 19 (2003). http://dx.doi.org/10.1038/nmat768.   DOI   ScienceOn
23 Lintao C, Kovalev A, Mayer TS. Conducting polymer nanofibers for gas sensor. International Conference on Information Technology and Applications in Biomedicine, Shenzhen, China, 196 (2008). http://dx.doi.org/10.1109/ITAB.2008.4570534.   DOI
24 Lee SK, Bai BC, Im JS, In SJ, Lee YS. Flame retardant epoxy complex produced by addition of montmorillonite and carbon nanotube. J Ind Eng Chem, 16, 891 (2010). http://dx.doi.org/10.1016/j.jiec.2010.09.014.   DOI   ScienceOn
25 Sadek AZ, Trinchi A, Wlodarski W, Kalantar-zadeh K, Galatsis K, Baker C, Kaner RB. A room temperature polyaniline nanofiber hydrogen gas sensor. Fourth IEEE Conference on Sensors, Irvine, CA, 207 (2005). http://dx.doi.org/10.1109/ICSENS.2005.1597672.   DOI
26 Agbor NE, Petty MC, Monkman AP. Polyaniline thin films for gas sensing. Sens Actuators B Chem, 28, 173 (1995). http://dx.doi.org/10.1016/0925-4005(95)01725-9.   DOI   ScienceOn
27 Buso D, Post M, Cantalini C, Mulvaney P, Martucci A. Gold nanoparticle-doped TiO2 semiconductor thin films: gas sensing properties. Adv Funct Mater, 18, 3843 (2008). http://dx.doi.org/10.1002/adfm.200800864.   DOI   ScienceOn
28 Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y. Single beta-AgVO3 nanowire $H_2S$ sensor. Nano Lett, 10, 2604 (2010). http://dx.doi.org/10.1021/nl1013184.   DOI   ScienceOn