• Title/Summary/Keyword: conducting composite film

검색결과 44건 처리시간 0.022초

다발/매트로 구성된 탄소나노튜브 복합재 엑츄에이터의 거동특성 및 응용연구 (Electromechanical Behaviors and Application of Carbon Nanotube Composite Actuators Consisting of Bundles and Mats)

  • 김철;류신윈
    • Composites Research
    • /
    • 제18권5호
    • /
    • pp.34-39
    • /
    • 2005
  • 단일벽 탄소나노튜브와 전기전도성 폴리머로 구성된 복합재 엑츄에이터의 변형율-전압간의 관계식이 유도되었으며, 얇은 복합재 필름 형태의 엑츄에이터의 전기기계적인 작동을 수식화하기 위해서 전기화학적 이온 접근법을 사용하였다. 이 방법은 엑츄에이터의 작동에 대한 이해를 쉽게 할 수 있다. 실험결과와 계산결과는 잘 일치한다. 이상적으로 잘 배열된 단일벽 탄소나노튜브 엑츄에이터는 좋은 반응특성과 작동력을 나타내었다. 작동변위는 나노튜브와 기지인 폴리머의 영향을 받으며, 단일벽 탄소나노튜브는 양의 전압에서는 기지를 보강하며 음의 전압에서는 기지를 수축하게 하는 영향을 미친다. 나노튜브의 배열을 곧게하고, 적절한 전해질과 전압을 선택하면 엑츄에이터의 성능을 최적화시킬 수 있다.

동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조 (Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization)

  • ;임진형
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.330-335
    • /
    • 2018
  • 서로 다른 중합 메카니즘(산화 커플링 중합 및 라디칼 중합)을 가지는 둘 이상의 단량체를 동시에 공-증발 기상 중합(SC-VPP)을 하여 유기-유기 전도성 복합 박막을 제조하는 새로운 접근법을 보고한다. 본 연구에서는 SC-VPP 공정을 통해 poly(3,4-ethylenedioxythiophene)(PEDOT)와 poly(styrene-co-maleic anhydride)(PSMA)로 구성된 PEDOT-PSMA 복합 박막을 제조하였다. 유기-유기 전도성 복합체 박막의 제조는 FT-IR 및 $1^H-NMR$ 분석을 통해 확인되었다. 전자주사현미경을 통한 표면 형태학 분석으로 PEDOT-PSMA 박막이 PEDOT 박막보다 좀 더 거친 표면을 보였다. 이것은 소수성 특성을 가지는 PEDOT과 친수성 특성기를 가지는 PSMA와의 좋지 않은 상용성 때문이라고 생각된다. 따라서 PEDOT-PSMA는 PEDOT보다 낮은 전기 전도도를 나타내었지만 약염기인 2-ethyl-4-methyl imidazole을 첨가하면 크게 개선되었다. PEDOT-PSMA의 접촉각은 PEDOT의 경우 $62^{\circ}$에 비해 약 $50^{\circ}$로 친수성이 증가하였고, 이는, PSMA가 가지는 카르보닐기에 의한 것이라 판단된다. 제안된 SC-VPP 기반 유기-유기 하이브리드 박막 제조 경로를 통하여 다양한 고분자 전도성 박막의 표면 특성(친수특성, 기계적 강도, 광학특성 및 표면 거칠기) 등을 제어할 수 있다고 판단한다.

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

대면적 졸-겔 산화아연/은 나노선 복합 투명 전도 기판 제조를 위한 스프레이 코팅법 개발 (Development of Spray Coating Methods for Large Area Sol-Gel ZnO/Ag Nanowire Composite Transparent Conducting Substrates)

  • 조원기;백승재
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.55-60
    • /
    • 2018
  • Transparent conductive thin films (TCFs) are essential materials for solar cells, organic light-emitting diodes, and display panels. Indium tin oxide (ITO) is one of the most widely used commercial materials to create TCFs'; however, new materials that can possibly replace ITO at a lower cost and/or those possessing mechanical flexibility are urgently needed. Silver nanowire (AgNW) is one of those promising materials, as it is less expensive and possesses superior mechanical flexibility as compared to ITO. We used AgNW and sol-gel ZnO to fabricate composite thin films by spray coating. We propose two spray-coating methods: the 'metal-organic chemical vapor deposition (MOCVD)/AgNW' method and the Mixture method. These two methods are expected to be commercialized for high-quality and low-cost products, respectively.

Transparent Conducting Film for Flat Panel Display using CNT by Electrospinning

  • Moon, Jin-San;Park, Jae-Hong;Han, Jae-Hee;Berdinsky, Alexander S.;Nam, Jae-Do;Lee, Dae-Hoi;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.978-980
    • /
    • 2004
  • We report the preparation and properties of polymer paste solutions with CNTs using conventional paste forming process. Electrospinning has been used for the fabrication of nano-fiber composite. In this process, dispersion of CNTs is very important matter. So, we emphasize the necessity of dispersion of CNTs in the solution and investigate effects of process parameters of electrospinning. The advantage of simple electrospinning process will be discussed..

  • PDF

CP-EAPap 생체모방 작동기의 제조 및 성능 (CP-EAPap biomimetic actuator fabrication and performance)

  • 이곡파;김재환;데시판데
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.360-363
    • /
    • 2005
  • Biomimetic actuators composed of cellophane with an electrically conducting polyaniline(PANI) film have been fabricated and tested in air ambience conditions doped with two different counter ions such as perchlorate (${ClO_4}^-$) and tetrafluoroborate (${BF_4}^-$). Fabrication of the trilayer CP//CELLOPHANE//CP substantially enhanced the tip displacement (13.2mm) compared to the small displacement (8.3mm) of the bilaye. CP//CELLOPHANE. The ion migration among layers is the main factor behind the expansion of cellophane, while the expansion/contraction of PANI are dependent on the redox reaction of the polymer. The displacement of the composite is dominated by the humidity content. This implies that the actuation principle is possibly due to the assistance of water existing.

  • PDF

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조 ($Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method)

  • 박영수;변명섭;최진섭;김진호;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.

수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과 (Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production)

  • 장점석;소원욱;김광제;문상진
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek;Nakayama, Tadachika;Jeong, DaeYong;Tanaka, Satoshi;Suematsu, Hisayuki;Niihara, Koichi;Choa, Yong-Ho
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.270-276
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.